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Abstract
Predicting genetic perturbations enables the identi-
fication of potentially crucial genes prior to wet-lab
experiments, significantly improving overall exper-
imental efficiency. Since genes are the foundation
of cellular life, building gene regulatory networks
(GRN) is essential to understand and predict the
effects of genetic perturbations. However, current
methods fail to fully leverage gene-related infor-
mation, and solely rely on simple evaluation met-
rics to construct coarse-grained GRN. More impor-
tantly, they ignore functional differences between
biotypes, limiting the ability to capture potential
gene interactions. In this work, we leverage pre-
trained large language model and DNA sequence
model to extract features from gene descriptions
and DNA sequence data, respectively, which serve
as the initialization for gene representations. Ad-
ditionally, we introduce gene biotype information
for the first time in genetic perturbation, simulating
the distinct roles of genes with different biotypes
in regulating cellular processes, while capturing
implicit gene relationships through graph structure
learning (GSL). We propose GRAPE, a heteroge-
neous graph neural network (HGNN) that lever-
ages gene representations initialized with features
from descriptions and sequences, models the dis-
tinct roles of genes with different biotypes, and dy-
namically refines the GRN through GSL. The re-
sults on publicly available datasets show that our
method achieves state-of-the-art performance. The
code for reproducing the results can be seen at the
link: https://github.com/ChangxiChi/GRAPE.

1 Introduction
Single-cell genetic perturbation refers to the process of
knocking out specific genes in single cells using CRISPR
technology [Barrangou and Doudna, 2016; Lino et al., 2018],
thereby altering their normal physiological state or behavior.
Despite significant advances in single-cell technology and
high-throughput screening, it remains impractical to perform
perturbation experiments on all genes within the vast genome

GRAPE

…
gene 1 gene 2 gene 3 …. gene N

Unperturbed Cell Gene Expression

…
gene 1 gene 2 gene 3 …. gene N

Perturbed Cell Gene Expression Prediction

Knock out 
gene k

Predict

Figure 1: Schematic diagram of genetic perturbation.

of a cell. Accurate prediction of the effects of untested ge-
netic perturbations helps reveal the specific roles of target
genes in cellular biological processes and uncovers the reg-
ulatory relationships and network structures between genes.
Using predictive models, potentially important genes can be
identified before experiments, improving the efficiency of the
utilization of experimental resources.

Generative models have been widely applied in perturba-
tion modeling, with existing approaches focusing on model-
ing the latent distribution of data to generate gene expression
changes under various perturbations. SAMS-VAE [Bereket
and Karaletsos, 2024] enhances model interpretability by us-
ing sparse global latent variables to disentangle the specific
effects of perturbations. GraphVCI [Wu et al., 2022], on the
other hand, leverages graph convolutional networks to model
gene regulatory networks (GRN) and predict gene expres-
sion under counterfactual perturbations. In contrast, GEARS
[Roohani et al., 2022] constructs a graph representation learn-
ing model based on gene pathways, ultimately producing pre-
diction based on gene embeddings.

However, these methods have several limitations. 1. Lack
of Biological Information: They do not fully leverage the
rich biological information available in genes, such as de-
tailed gene descriptions and DNA sequences, which provide
valuable insights into the functional roles of genes. 2. Failure
to Capture Implicit Gene Interactions: Relying on simplis-
tic evaluation metrics, these methods fail to capture the com-
plex nature of gene regulation, where genes interact in diverse
and multifaceted ways, hindering the accurate modeling and
prediction of gene behavior across various biological con-
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texts. 3. Ignoring Biotype-Specific Gene Functions: Cod-
ing genes (c-genes) are transcribed into mRNA and translated
into proteins, while non-coding genes (nc-genes) are tran-
scribed into RNA but do not produce proteins. Biotype refers
to the classification of genes into coding and non-coding
categories based on their functional roles, with the func-
tional dimensions of genes varying across biotypes [Dykes
and Emanueli, 2017; Böhmdorfer and Wierzbicki, 2015;
Magistri et al., 2012; Pankiewicz et al., 2021]. These meth-
ods overlook these differences, limiting their ability to model
gene interactions effectively.

To address these issues, we propose GRAPE (Het-
erogeneous Graph Representation LeArning for Genetic
PErturbation) to predict genetic perturbation, which utilizes
pre-trained large language model and DNA sequence model
for gene feature initialization. Furthermore, GRAPE con-
structs a GRN as heterogeneous graph to capture the distinct
roles of different biotypes and automatically learn the inter-
actions between genes via graph structure learning. Experi-
ments on publicly available datasets show that GRAPE out-
performs existing methods.

The main contributions of our work are as follows:
• Perspective: We introduce GRAPE, the first model to

incorporate cellular gene biotype information (coding
and non-coding genes), to model gene regulatory net-
works as heterogeneous graphs. This approach captures
the distinct functional roles of genes from different bio-
types through heterogeneous graph neural networks.

• Algorithm: We initialize gene representations by lever-
aging pre-trained models [Kenton and Toutanova, 2019;
Nguyen et al., 2024] to extract multi-modal features of
genes (textual descriptions and DNA sequences), which
are then semantically aligned and fused to generate
richer and more comprehensive representations. Be-
sides, in constructing the gene interaction network, we
propose a novel graph structure learning (GSL) method
to capture implicit gene relationships.

• Experiments: We demonstrate the superiority of
GRAPE over existing methods on publicly datasets, us-
ing a range of comprehensive evaluation metrics.

2 Related Work
2.1 Graph Structure Learning (GSL) and

Heterogeneoous Graph Neural Network
(HGNN)

GSL optimizes the graph’s structure to enhance informa-
tion flow, improve node representations.[Franceschi et al.,
2019] jointly learn the graph structure and GCN parame-
ters; SLAPS ([Fatemi et al., 2021]) uses self-supervision to
better infer graph structures for GNNs; HGSL([Zhao et al.,
2021]) generating relation subgraphs based on feature sim-
ilarity, propagation, and semantics. HGNNs learn relation-
ships between different node types and generate node rep-
resentations. HetGNN [Zhang et al., 2019] uses a random
walk strategy and two aggregation modules to generate em-
beddings; HAN [Wang et al., 2019] uses hierarchical atten-
tion mechanisms at both node and semantic levels; SeHGNN

[Shi, 2022] reduces complexity by using a lightweight mean
aggregator and avoids excessive attention mechanisms. De-
spite their individual advantages, there remains room for im-
provement in capturing more complex and implicit relation-
ships within heterogeneous graphs.

2.2 Genetic Perturbation Model
Gene perturbation is a essential direction in single-cell pertur-
bation research. The Variational Autoencoder (VAE) frame-
work and Graph Neural Networks (GNNs) have emerged as
the dominant approaches in this filed of study. scGen [Lot-
follahi et al., 2019] is the first to use deep learning methods
to model single-cell perturbations, utilizing variational au-
toencoders to capture cellular responses to perturbations in
single-cell gene expression; GEARS [Roohani et al., 2022]
introduces ontology modality to model gene-gene interaction
relationships; CellOracle [Bunne et al., 2023] leverages gene-
regulatory networks from single-cell multi-omics data to sim-
ulate transcription factor perturbations; SAMS-VAE [Bereket
and Karaletsos, 2024] incorporates sparse global latent vari-
ables to enhance model interpretability; GraphVCI [Wu et
al., 2022] propose a novel graph-based Bayesian causal infer-
ence framework to predict gene expression responses. These
methods have several limitations. They fail to fully leverage
available biological information, which provide valuable in-
sights into gene functions. Moreover, relying on simplistic
evaluation metrics, they cannot capture the complex nature of
gene regulation, hindering accurate predictions. Additionally,
overlooking the functional differences between genes of dif-
ferent biotypes hinders their ability to effectively model gene
interactions.

3 Preliminaries
In this section, we expound some basic concepts and give
some definitions of our model.
Definition 1. Heterogeneous Graph We introduce an
undirected heterogeneous graph G = (N,R,X), where N
is node set, along with node type mapping function φ : N →
T = {c-gene, nc-gene}, R is edge set, along with edge type
mapping function ϕ : R → E = {rcc, rcn, rnn}, X is node
feature matrix.
Definition 2. Model Input and Output The model takes
as input gene textual descriptions and DNA sequence infor-
mation, along with the perturbation conditions. As illustrated
in Fig.1, the task of our model is to predict the change in
single-cell expression levels under a given perturbation con-
dition (e.g., knockdown of gene k).

4 Method
In this section, we introduce the proposed model GRAPE.
Figure.2.A illustrates the workflow for initializing gene fea-
tures using sequence and textual descriptions by DNA se-
quence model [Nguyen et al., 2024] nad LLM [Kenton
and Toutanova, 2019], respectively. Figure.2.B presents the
methodology for constructing gene interaction networks and
performing heterogeneous graph representation learning.
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Stage B. GRN construction
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Figure 2: Overview of the GRAPE.

4.1 Gene Representation Initialization

Existing methods often initialize gene representations based
on gene indices, which lack biological prior information and
interpretability, potentially increasing the cost of model con-
vergence. Therefore, we propose multi-modal biological
prior information for representation initialization, enabling a
more effective capture of the intrinsic gene characteristics.
Building upon the pre-trained models [Nguyen et al., 2024;
Kenton and Toutanova, 2019], we align gene sequences with
their textual descriptions to effectively integrate and capture
the shared semantic information between them.

Formally, we extract DNA sequence features using
[Nguyen et al., 2024] and textual description features using
[Kenton and Toutanova, 2019], resulting in the multi-modal
features matrix Xm = [x1

m, x2
m, ..., xN

m] ∈ RN×dm , where
m ∈ {seq, text} denotes either the sequence or the tex-
tual description modality, with a dimensionality of dm. Our
goal is to ensure that the semantic integrity of each modal-
ity is preserved while achieving a unified feature representa-
tion Zm = f(Xm) = [z1m, z2m, ..., zNm ]T ∈ RN×qm after the
alignment, where f represents the transformation process.

Specifically, we aim to align the features extracted from
different modalities for the same gene, while ensuring that
cross-modal features from different genes are pushed apart.
We achieve this using contrastive learning [Oord et al., 2018],

and the corresponding formula is as follows:

Lalign = −
N∑
i=1

exp(D(zi
S ,zi

D)/T )∑N
j=1 exp

(D(zi
S ,zj

D)//T )
(1)

where D is the discriminator function that estimates the
cosine similarity between the features after transformation.
This indirect contrastive learning approach helps mitigate the
disruption of the original semantics of each modality dur-
ing alignment. After modality alignment, we obtain the
multi-modal fusion features through a multi-layer perceptron
(MLP) Ψ:

Zfus = Ψ(Zseq||Ztext) (2)

4.2 Gene Regulation Network Construction
Based on the multi-modal features previously extracted, we
can construct a graph for each modality m, where m ∈ M =
{seq, text, fus}, according to the similarity of the charac-
teristics between genes, thus revealing gene associations from
different perspectives. Specifically, each gene is treated as a
node in the graph, with multiple modality-specific represen-
tations. The edge between node zim and node zjm is obtained
by:

Gm[i, j] =

{
Sm(zim, zjm), if Sm(zim, zjm) ≥ ϵm

0, otherwise
(3)

where ϵm is used to control the sparsity of the graph corre-
sponding to the m modality. Sm is a multi-head similarity
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module that computes multiple similarity scores using differ-
ent heads with independent parameters. The definition is as
follow:

Sm(zim, zjm) =
1

T

T∑
t=1

cos(zimW t
m, zjmW t

m) (4)

where W t
m denotes the learnable parameters of the t-th simi-

larity head in the m modality. After the above graph construc-
tion steps and edge filtering, we obtain the gene interaction
network structures Gm from the perspective of each modality.
To aggregate the Gene Regulatory Networks (GRNs) Gagg

from different modalities, we can express the aggregation as
the mean across all modalities:

Gagg =
1

|M |
∑
m∈M

Gm (5)

However, graphs constructed using simple similarity-based
methods tend to capture only coarse-grained neighbor rela-
tionships, making it challenging to comprehensively model
the complex and latent interactions between nodes. In real-
world scenarios, genes often exhibit latent interactions across
multiple scales, necessitating a more flexible and holistic
mechanism to model their associations. To address this, we
introduce the K-hop GCN aggregation mechanism, which
aggregates the results from different K-hop convolutional
layers to integrate multi-scale structural information, en-
abling a more effective representation of the intricate gene
interactions. In practice, we aggregate the node relationships
across different hop distances as follows:

H(l+1) = GCN(Gagg, H
(l)) (6)

Gk[i, j] = Sk(Hk
i , H

k
j ) (7)

when l = 0, the feature matrix H(l) is typically initialized
as the initial node fusion representations Zfus (Eq. (2)), with
GCN serving as the backbone for feature aggregation [Kipf
and Welling, 2016].

Then the K-hop structure is defined as:

G = Φ(G1,G2, . . . ,Gk) (8)

E = {(i, j)|G(i, j) ≥ ϵ} (9)
where Φ denotes a channel attention layer. The edge set E are
selected to capture the most significant relationships between
nodes. To maintain the structural consistency between the
original graph Gagg and the k-hop graph G, the regulariza-
tion (Eq. (10)) is proposed, ensuring that the model does not
deviate from the local structural information of the original
graph while learning higher-order graph structures.

Lreg = ||G−Gagg||2 (10)

4.3 Heterogeneous Graph Representation
Learning

As mentioned earlier, c-genes and nc-genes regulate the cel-
lular state at different level [Dykes and Emanueli, 2017;
Böhmdorfer and Wierzbicki, 2015; Magistri et al., 2012;
Pankiewicz et al., 2021]. Therefore, it is necessary to con-
struct a gene interaction network using a heterogeneous graph

based on the gene biotype. To simplify the problem, we re-
gard the heterogeneous graph as an undirected graph.

Based on the graph construction before, we map the nodes
using φ and the edges using ϕ as defined in Definition.1.
Given the different types of associations between genes, we
design a multi-head heterogeneous graph attention network
(HGAT) to aggregate these features:

P (l+1) =
1

|E|
∑
r∈E

(
1

H

H∑
h=1

GATh
r ({e|e ∈ E∧ϕ(e) = r}, P l))

(11)
where H represents number of head, and P (0) = Zfus is ini-
tialized as the fusion gene embeddings with perturbation in-
formation, which will be elaborated on in the following sec-
tion. The GAT used for feature aggregation can be found in
[Brody et al., 2021; Veličković et al., 2017].This framework
enables the model to actively learn the weights of different
types of edges by leveraging the attention mechanism. In the
context of a heterogeneous graph, where various edge types
represent distinct gene interactions, the model can assign in-
dependent parameters to each type of relationship. By doing
so, it allows the model to prioritize the most relevant interac-
tions for each specific task, rather than treating all the edges
equally.

4.4 Genetic Perturbation Prediction
During training process, GRAPE initializes gene embed-
dings Zm and constructs gene regulation network G at first.
Given a gene perturbation condition c, which biologically
corresponds to the knockout of a specific gene , we incor-
porate this perturbation information into the original input in
multi-head HGAT to simulate its effects. Specifically, this
involves masking the representations of the corresponding
knockout genes in Zfus, ultimately resulting in the final out-
put Pc = {p1c , p1c , . . . , pNc } ∈ RN×d of Eq. (11).

Considering that each gene has its own unique expression
pattern [Roohani et al., 2022], we apply an independent linear
transformation to each gene to obtain the final output under
perturbation c:

ĝic = Wi ⊙ pic + bi ∈ R (12)

where ⊙ denotes Hadamard Product. Ultimately, the predic-
tion of gene expression can be obtained by:

g̃c = ĝc + ctrl (13)

where ctrl represents the expectation of gene expression lev-
els from the control group cells (non-knockout).

To optimize the GRAPE’s performance, we compute the
mean squared error (MSE) between the predicted and true
gene expression values under condition c:

Lmse =
1

N

N∑
i=1

(gic − g̃ic)
2 (14)

where gc ∈ RN×1 represents the observed gene expression
value sampled under perturbation condition c. Moreover,
to control the direction of gene expression changes, we use
the Huber loss function, which combines MSE’s sensitivity to
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RMSE(↓) DAC(↑) PCC delta(↑)
All DE20 DE40 All DE20 DE40

Adamson

GRAPE (Ours) 0.0754 ± 0.0006 0.6948 ± 0.0031 0.8863 ± 0.0029 0.9363 ± 0.0023 0.7461 ± 0.0070 0.7828 ± 0.0124 0.8010 ± 0.0110
GEARS 0.0812± 0.0008 0.6557± 0.0024 0.7881± 0.0038 0.7876± 0.0027 0.5514± 0.0064 0.6109± 0.0059 0.6429± 0.0084

GraphVCI 0.4031± 0.0064 0.5315± 0.0184 0.6114± 0.0233 0.4807± 0.0112 0.1647± 0.0201 0.4138± 0.0306 0.4405± 0.0291
sams-VAE 0.6511± 0.0113 0.4241± 0.0218 0.6659± 0.0351 0.5625± 0.0377 0.1441± 0.0195 0.4155± 0.0432 0.4313± 0.0319

Norman

GRAPE (Ours) 0.0482 ± 0.0003 0.7583 ± 0.0012 0.7352 ± 0.0014 0.7556 ± 0.0011 0.4742 ± 0.0052 0.5452 ± 0.0152 0.5581 ± 0.0107
GEARS 0.0702± 0.0007 0.5201± 0.0050 0.6319± 0.0057 0.6361± 0.0047 0.4277± 0.0036 0.5012± 0.0044 0.5417± 0.0043

GraphVCI 0.5572± 0.0187 0.2795± 0.0127 0.3395± 0.0183 0.3664± 0.0174 0.1202± 0.0147 0.3205± 0.0340 0.2423± 0.0286
sams-VAE 0.5025± 0.0170 0.3742± 0.0209 0.4963± 0.0402 0.5361± 0.0343 0.1248± 0.0117 0.3066± 0.0258 0.2490± 0.0274

Table 1: Performance comparison across different models on Adamson and Norman datasets, evaluated by RMSE, Direction Accuracy
Coefficient (DAC), and Pearson Correlation Coefficient (PCC) metrics.

small errors with MAE’s robustness to large errors, reducing
the impact of outliers and ensuring more stable training in
noisy data.

Ldir =
1

N

N∑
i=1

Huber(tanh(gi − ctrli), tanh(g̃i − ctrli))

(15)

Huber(a, b) =

{
1
2 (a− b)2, if |a− b| ≤ δ

δ(|a− b| − 1
2δ), otherwise

(16)

The reconstruction objective of the model for gene expres-
sion values is represented as:

Lrecon = Lmse + Ldir (17)

4.5 Training Steps
During model training, we optimize the above objectives si-
multaneously, and the final training objective is defined as:

L = Lrecon + Lreg + Lalign (18)

here, Lalignis specifically optimized during the pre-training
phase before the main model training.

4.6 Analysis of Time Complexity
To simplify the analysis, we assume the feature dimension has
no impact and treat computations as O(1). The computational
cost of the model consists of four main components: multi-
head attention O(H1 · N2), K-hop similarity (O(K · m)),
channel attention O(N2), and feature extractions from multi-
head HGAT O(L · H2 · (|E| + N)). Here, N denotes the
number of genes, H1 represents head number in Eq. (4), m
stands for the number of edges in the result of Eq. (3), with L
and H2 referring to the layer depth and the number of atten-
tion heads in Eq. (11), respectively.

5 Results and Discussion
To demonstrate the effectiveness of our method, we conduct
extensive experiments on public available datasets. Adamson
dataset [Adamson et al., 2016] contains data from 87 types
of single-gene perturbations, with a total of 68, 603 single-
cell RNA sequencing results. Norman dataset [Norman et al.,
2019] includes results from both single-gene and double-gene
perturbations. We only select experimental data for single-
gene perturbations, with over 100 types of single-gene per-
turbations in total. In each dataset, hundreds of single-cell
RNA sequencing data can be obtained for each type of ge-
netic perturbation.

5.1 Experiment Settings
Gene text descriptions, sequences, and biotypes can all be ac-
cessed through the API provided by Ensemble (Click here
to visit the tutorial). In the training process of GRAPE,
we randomly select 70% of gene perturbation conditions for
the training set and use the remaining for testing, then select
single-cell data according to these conditions. The number of
heads in both the multi-head similarity module (Eq. 4) and the
multi-head HGAT module (Eq. 11) is set to 4. The model is
trained using the AdamW [Loshchilov, 2017] optimizer with
a learning rate of 0.001 and a batch size of 64. For evalu-
ation, we adopt multiple metrics, including Direction Accu-
racy Coefficient (DAC), Root Mean Square Error (RMSE),
and Pearson Correlation Coefficient delta (PCC delta), to as-
sess the model’s prediction accuracy and biological relevance
(refer to the github for further details). All our method and its
competitors are conducted using four Nvidia A100 GPUs.

5.2 GRAPE outperform existing methods
Table 1 demonstrates that GRAPE significantly outperforms
existing gene perturbation methods ([Roohani et al., 2022;
Wu et al., 2022; Bereket and Karaletsos, 2024]) across all
evaluated metrics. While Root Mean Square Error (RMSE)
measures the overall prediction error, DAC and PCC delta
provide deeper biological insights. DAC evaluates the con-
sistency between predicted and true directions of gene ex-
pression changes, which is crucial for understanding gene
regulatory effects and ensuring accurate biological interpreta-
tions, as incorrect directional predictions can lead to mislead-
ing conclusions. PCC delta, on the other hand, quantifies the
consistency in the change of gene expression values between
the predicted and true values under perturbation conditions.
Together, these metrics offer a comprehensive assessment of
model accuracy and relevance in biological contexts.

GRAPE showcases superior performance compared to
GEARS [Roohani et al., 2022], primarily because it goes
beyond GEARS’ simplified gene interaction network by ac-
counting for the diverse relationships across different biotype
genes. GRAPE actively uncovers latent connections between
genes, providing a deeper understanding of gene regulatory
dynamics. In contrast, generative models [Wu et al., 2022;
Bereket and Karaletsos, 2024] perform poorly due to their in-
ability to effectively capture the semantic meaning of gene
perturbation conditions. This limitation hinders their abil-
ity to model biologically relevant features, resulting in less
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Figure 3: The UMAP visualization of gene representations. Subfigures A and B show the gene text modality representations and gene
sequence modality representations extracted by the pre-trained LLM and DNA sequence model, respectively. Subfigure C illustrates the
representations extracted by GRAPE after training.
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Figure 4: The picture shows the distribution of predicted values
across samples.

accurate predictions. Moreover, GRAPE leverages multi-
modal information to initialize gene representations, provid-
ing a more comprehensive and biologically meaningful char-
acterization of genes.

To further evaluate the model’s performance, we visual-
ize the distribution of DAC and PCC values across samples
(Fig.4). These plots provide a detailed view of the prediction
accuracy at the sample level, highlighting the variability and
consistency of the model’s predictions. By focusing on these
key metrics, the violin plots offer an intuitive representation
of how well the model captures the directionality and correla-
tion of gene expression changes under different perturbations.

5.3 GRAPE Enhances Gene Representation with
Biotype-Aware Heterogeneous Graphs

To evaluate GRAPE leveraging biotype knowledge, we first
visualize gene features extracted from pre-trained LLM [Ken-
ton and Toutanova, 2019] and DNA sequence model [Nguyen
et al., 2024], focusing on two modalities: gene textual de-
scriptions (Fig.3.A) and gene sequences (Fig.3.B). For this,
we employe Uniform Manifold Approximation and Projec-
tion (UMAP) to visualize the high-dimensional gene features
in a lower-dimensional space. The visualizations of Fig.3.A
and Fig.3.B reveal that the clustering of gene representations
did not align with the biotype labels. Despite the inher-
ent complexity and richness of these features, the unsuper-
vised clustering approach failed to exhibit any clear, biotype-
specific grouping. This suggests that the pre-trained mod-
els, although capable of extracting meaningful features, does
not sufficiently capture the underlying biological relevance of
gene biotypes on its own.

In contrast, after training the GRAPE, which incorporates
biotype-aware heterogeneous graphs into the representation
learning process (Eq. (11)), the extracted gene features ex-
hibited a distinct biotype-based clustering pattern (Fig.3.C).
The representations of genes that belong to the same biotype
formed tight and well-separated clusters, indicating that the
model successfully learned to embed gene biotype informa-
tion into the feature space. This outcome highlights the effi-
cacy of GRAPE in improving gene representation by dynam-
ically adjusting the gene regulatory network and then extract-
ing features through HGAT that incorporates biotype-aware
information.

Constructing a heterogeneous graph network effectively
represents the complex relationships between genes and sim-
ulates interactions between different biotype genes, thereby
enhancing gene representation through HGAT. On the other
hand, when biotype is directly concatenated as a feature to
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Figure 5: Ablation Study Results.

the gene representation, the model may fail to fully explore
the underlying connections between genes based on their bio-
type. This approach only provides a singular biotype fea-
ture, lacking interactions with other gene attributes and fails
to leverage the diversity of nodes and edges in the GRN. As a
result, the model may not capture the biological significance
of genes in their multidimensional relationships. Addition-
ally, directly incorporating the biotype label as a feature could
lead to over-reliance on the biotype information, potentially
neglecting other crucial biological features, which could in
turn reduce the model’s generalization ability.

5.4 Ablation Study
To further evaluate the effectiveness of GRAPE, we com-
pare it with the following methods through an ablation study.
1)only seq: Excludes the textual description modality fea-
tures, using only the DNA sequence features in the model.
2)only desc: Excludes the DNA sequence modality features,
using only the textual description features in the model.
3)only fusion: Uses the fusion modality, combining both
desc and seq features into a unified representation, excluding
the individual modalities. 4)w/o GSL: Excludes the K-hop
similarity graph structure learning process. 5)w/o biotype:
Ignores biotype information, converting the GRN into a ho-
mogeneous graph, and uses a homogeneous GNN instead of
HGNN. The results are shown in Figure.5.

The experimental results show that GRAPE outperforms
methods relying on individual modalities. This indicates that
integrating multiple modalities allows the model to capture
a broader range of information, leveraging complementary
insights from each modality for improved performance and
more robust feature extraction. Additionally, the performance
of no GSL is less than ideal, highlighting the significant role
that graph structure learning plays in capturing the hidden re-

lationships between genes. Without graph structure learning,
the model fails to fully leverage the intricate connections and
dependencies inherent in the gene interactions, which are es-
sential for accurate representation and prediction.

More importantly, the results clearly demonstrate the ef-
fectiveness of introducing biotype information. By leverag-
ing HGNN, the model is able to capture and simulate the
complex, multi-dimensional regulatory relationships between
genes. This approach not only allows for a more nuanced
understanding of gene interactions across different biological
categories, but also enhances the model’s ability to predict
gene behavior with greater accuracy.

6 Conclusion

In this work, we present GRAPE, a heterogeneous graph
neural network (HGNN) that integrates gene biotype infor-
mation for predicting genetic perturbations. By leveraging
pre-trained large language model (LLM) and DNA sequence
model to extract features from gene textual descriptions and
DNA sequences, we initialize gene representations in a way
that captures both sequence-based and textual semantic infor-
mation. Furthermore, for the first time, we incorporate gene
biotype data to simulate the distinct roles of different biotypes
in regulating cellular processes. Through graph structure
learning (GSL), GRAPE dynamically refines the gene regu-
latory network (GRN), effectively capturing implicit gene re-
lationships. Our method outperforms existing approaches on
publicly available datasets, achieving state-of-the-art perfor-
mance in predicting genetic perturbations. If sufficient data is
available, it can enable a zero-shot model on top of GRAPE,
automatically constructing gene regulatory networks (GRN)
and inferring gene interactions to predict genetic perturbation
results without human annotations.
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and Andrzej T Wierzbicki. Control of chromatin struc-
ture by long nonco ding rna. Trends in cell biology,
25(10):623–632, 2015.

[Brody et al., 2021] Shaked Brody, Uri Alon, and Eran Ya-
hav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

[Bunne et al., 2023] Charlotte Bunne, Stefan G Stark,
Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch
Levesque, Kjong-Van Lehmann, Lucas Pelkmans, An-
dreas Krause, and Gunnar Rätsch. Learning single-cell
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Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Wang et al., 2019] Xiao Wang, Houye Ji, Chuan Shi, Bai
Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Hetero-
geneous graph attention network. In The world wide web
conference, pages 2022–2032, 2019.

[Wu et al., 2022] Yulun Wu, Robert A Barton, Zichen Wang,
Vassilis N Ioannidis, Carlo De Donno, Layne C Price,
Luis F Voloch, and George Karypis. Predicting cellu-
lar responses with variational causal inference and refined
relational information. arXiv preprint arXiv:2210.00116,
2022.

[Zhang et al., 2019] Chuxu Zhang, Dongjin Song, Chao
Huang, Ananthram Swami, and Nitesh V Chawla. Het-
erogeneous graph neural network. In Proceedings of the
25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 793–803, 2019.

[Zhao et al., 2021] Jianan Zhao, Xiao Wang, Chuan Shi,
Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous
graph structure learning for graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 35, pages 4697–4705, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


