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Abstract
Real-life deployment of federated Learning (FL)
often faces non-IID data, which leads to poor
accuracy and slow convergence. Personalized FL
(pFL) tackles these issues by tailoring local models
to individual data sources and using weighted
aggregation methods for client-specific learning.
However, existing pFL methods often fail to
provide each local model with global knowledge
on demand while maintaining low computational
overhead. Additionally, local models tend to over-
personalize their data during the training process,
potentially dropping previously acquired global
information. We propose FLAYER, a novel layer-
wise learning method for pFL that optimizes local
model personalization performance. FLAYER
considers the different roles and learning abilities
of neural network layers of individual local
models. It incorporates global information for
each local model as needed to initialize the
local model cost-effectively. It then dynamically
adjusts learning rates for each layer during local
training, optimizing the personalized learning
process for each local model while preserving
global knowledge. Additionally, to enhance
global representation in pFL, FLAYER selectively
uploads parameters for global aggregation in a
layer-wise manner. We evaluate FLAYER on
four representative datasets in computer vision and
natural language processing domains. Compared
to eight state-of-the-art pFL methods, FLAYER
improves the inference accuracy, on average, by
5.20% (up to 14.29%). The code is available at
https://github.com/lancasterJie/FLAYER/.

1 Introduction
Federated learning (FL) enables collaborative model training
across diverse, decentralized data sources while preserving
the confidentiality and integrity of each dataset. It is widely
used in mobile applications like private face recognition [Niu
and Deng, 2022], predictive text, speech recognition, and
image annotation [Song et al., 2022]. However, data
from mobile devices frequently exhibits non-independent

and identically distributed (non-IID) characteristics due
to variations in user behavior, device types, or regional
differences [Zhu et al., 2021a]. This data heterogeneity poses
significant challenges for typical FL algorithms, as the trained
global model may struggle to adapt to the specific needs of
individual clients, resulting in poor inference performance
and slow convergence.

Personalized Federated Learning (pFL) tackles this issue
by tailoring learning to each client [Tan et al., 2022].
Instead of producing a single global model, pFL generates
client-specific models to better capture local data nuances.
Customization can be implemented via diverse strategies,
including model-wise [Luo and Wu, 2022], layer-wise [Ma et
al., 2022], or element-wise [Zhang et al., 2023b] aggregation,
each offering varying degrees of granularity and control.

Model-wise aggregation methods like APPLE [Luo and
Wu, 2022], FedAMP [Huang et al., 2021] and Ditto [Li et al.,
2021b] aggregate entire client models using learned weights,
enabling broad global knowledge integration but lacking
granularity for data-specific variations. This approach also
incurs high computational overhead for model selection,
hindering scalability. Layer-wise methods address some of
these challenges by allowing local aggregation in layer units.
Here, a “layer unit” can be a single neural network layer or a
block comprising multiple layers. Representative approaches
include FedPer [Arivazhagan et al., 2019], FedRep [Collins
et al., 2021] and pFedLA [Ma et al., 2022]. These methods
allow for more targeted adaptation of different parts of the
network. For example, FedRep uses the global model to
construct the lower layers (i.e., layers toward the input
layer, also termed as base layers) of each local model and
the higher layers (i.e., layers toward the model’s output
layer, also termed as head layers) are built solely on local
data for personalization. This design strikes a balance
between global knowledge sharing and local personalization.
Element-wise aggregation, such as FedALA [Zhang et al.,
2023b], assigns per-parameter weights for finer control, but
introduces prohibitive computational/memory costs in large
models. Its pre-defined static weights limit adaptability
to dynamic data environments. Moreover, all above pFL
methods use a constant learning rate across all clients during
training, without considering the differing learning needs
of various layers for each client. This may lead to over-
personalization for each client, resulting in the loss of
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previously aggregated global information.
To address these gaps, we introduce FLAYER, a

novel layer-wise optimization framework for pFL that
effectively balances global representation learning with
local customization. Figure 1 outlines FLAYER ’s local
learning process, comprising three key stages: local model
initialization (incorporating both local and global insights
into the head layers), adaptive layer-wise training (mitigating
gradient vanishing and facilitating faster convergence), and
layer-specific parameter uploading via masking (ensuring
that only essential updates are shared to preserve global
features). Through this layered, adaptive approach,
FLAYER effectively balances personalized learning with
shared global knowledge while reducing computational
overhead. We evaluate FLAYER by applying it to both
image [Krizhevsky et al., 2009; Chrabaszcz et al., 2017]
and text [Zhang et al., 2015] classification tasks using four
widely adopted benchmarks. The results show that FLAYER
outperforms eight other pFL methods in inference accuracy
and computational cost. This paper makes the following
contributions:

• A new performance-guided layer-wise aggregation
method allows clients to dynamically incorporate both
local and global information in a cost-effective manner;

• A new layer-specific adaptive learning rate scheme
for pFL to steer the personalization and speed up
convergence;

• A new layer-wise masking technique for selectively
uploading essential parameters to the central server to
improve global representation.

2 Background and Overview
2.1 Problem Definition
pFL learns personalized models cooperatively among clients.
Consider a scenario where we have n clients, and each
client processes their distinct private training data denoted as
D1, D2, . . . , DN , which has different data classes and sizes.
These datasets exhibit heterogeneity, characterized by non-
IID [Zhao et al., 2018]. The goal of pFL can be defined as:

{θ1, θ2, ..., θn} = argmin
θ

n∑
k=1

mk

M
Lk(θk) (1)

where θk is the model parameters of client k, mk is the data
size of Dk, M is the whole data size of all clients, Lk(θk) is
the loss function of client k.

2.2 Overview of FLAYER
Figure 1 illustrates FLAYER workflow for the k-th client
in iteration t. Each client begins by downloading the
global model and applying an adaptive aggregation strategy
that dynamically weights global and local models based
on local inference accuracy, allowing stronger performers
to guide head-layer initialization. During local training,
a layer-wise adaptive learning rate optimizes updates
for each layer according to its position and gradient,

improving personalization and convergence. Finally, a layer-
wise masking strategy selectively uploads only essential
parameters to the server, preserving critical local insights and
enhancing the global representation. Algorithm 1 details the
entire FL process.

3 Methodology
3.1 Performance-guided Layer-wise Local

Aggregation
Building on previous findings [Yosinski et al., 2014; Zhu
et al., 2021b] that base layers of deep neural network
(DNN) capture generalized features while head layers encode
task-specific features, we introduce a differentiated update
strategy for these layers. In our approach, during the local
model initialization stage, the base layers of each client’s
model are directly updated using parameters from the global
model. This ensures the consistent refinement of generalized
features across all clients. For the head layers, we use a
dynamic aggregation method to integrate both global and
local parameters. This integration is tailored based on the
performance of the k-th client’s model on its local dataset Dk

from the previous iteration. The process is defined as follows:

θ̃tk := [θ(1:L−s,t−1)
g , At−1

k,l ⊙ θ
(L−s+1:L,t−1)
k +At−1

k,g ⊙ θ(L−s+1:L,t−1)
g ]

s.t. Ak,l +Ak,g = 1 (2)

Here, θk is the local model parameter matrix of the k-th
client, θ̃k denotes the local model parameter matrix of the k-
th client after initialization, L is the total number of layers,
s is the number of layers in the head for personalization,
and θ

(1:L−s,t−1)
g represents the lower L − s layers in the

base part of the global model at iteration t − 1, which
are used to update the base layers in the local model, and
all the clients share the same base layers. θ

(L−s+1:L,t−1)
k

denotes the head layers of the k-th local model. We
aggregate the head layers from the local and global models
to initialize the head layers for the local model. The
aggregation weights Ak,g and Ak,l control the influence of
global and local parameters, respectively. At iteration t− 1,
the local model inference accuracy on dataset Dk sets the
local weight At−1

k,l , with (1 − Ak,l) adjusting for global
influence. The dynamic weighting for head layers helps each
client gradually “specialize” its head layers, without getting
stuck in unproductive local optima. When local performance
is low, leaning on the global head acts like a safety net, pulling
the client’s parameters closer to the collective knowledge.
As local performance improves, the client can afford to
rely more on its own specialized parameters. FLAYER
ensures convergence by aligning foundational features (base
layers) and employing performance-driven head adjustments
(head layers), the method fosters stable updates and mitigates
divergence, enabling steady convergence.

3.2 Adaptive Layer-specific Learning Rate
After the model initialization, the local model trains on its
local dataset Dk:

θ̂tk := θ̃tk − η∇θ̃k
Lk(θ̃

t
k, Dk) (3)
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Figure 1: The local learning process of FLAYER on k-th client during the t-th iteration. In the local initialization stage, FLAYER aggregates
both local and global head layers based on the local model’s performance from the previous iteration. The initialized local model is then
trained on the local data, using an adaptive learning rate for each layer. Based on the parameter changes before and after local training,
FLAYER constructs a masking matrix to identify and select essential parameters, with different proportions per layer, for updating the global
model.

η represents the learning rate, ∇θ̃k
Lk(θ̃

t
k, Dk) is the

gradient of the loss functionLk with respect to the parameters
θ̃k evaluated using local dataset Dk.

The existing pFL methods [Luo and Wu, 2022; Li et
al., 2021b; Huang et al., 2021; Arivazhagan et al., 2019;
Collins et al., 2021; Zhang et al., 2023b] typically employ
a fixed learning rate. However, in the context of FL
with non-IID data, we observe that the learning rate is a
critical hyperparameter that significantly impacts both the
performance and convergence speed of local models (see
Section Ablation). Previous work [Singh et al., 2015]
pioneered layer-wise learning rate adjustments, primarily to
mitigate the vanishing gradient issue in the lower layers of
DNNs within a non-distributed training context. However,
this approach is not well-suited for the pFL context. Inspired
by [Luo et al., 2021] and our observation (see Section Layer
Similarity), we note that the first layer among all local
models, showing the highest similarity, captures universal
features and thus requires a smaller learning rate with
more gradual adjustments. In contrast, deeper layers,
exhibiting greater divergence, deal with more complex,
client-specific features and benefit from larger learning steps,
which aids local model personalization. Building on these
insights, we implement an adaptive learning rate scheme
for pFL that integrates layer positional information with the
corresponding gradient:

η(i,t) = η

(
1 + log

(
1 +

1

∥g(i,t)∥2

)
× i

L

)
(4)

where:
• η is the base learning rate.

• g(i,t) represents the gradient vector of the i-th layer at
iteration t.

• ∥g(i,t)∥2 is the L2 norm (Euclidean norm) of the
gradient.

• L is the total number of layers.
This approach applies lower learning rates to the initial

layers, which capture universal features, and larger rates

to deeper layers, which handle client-specific features.
Empirical results (see Section Ablation) demonstrate that
the adaptive learning rate scheme significantly improves
convergence speed and model accuracy compared to fixed
learning rate strategies.

3.3 Layer-wise Sparse Binary Masking
In non-IID settings, naively averaging updated client
parameters on the server can overshadow essential local
information. To mitigate this issue, we propose a layer-wise
binary masking scheme that selectively uploads parameters
to preserve critical knowledge and maintain a robust global
representation. Our approach leverages the observation that
early layers capture broadly shared features across clients,
whereas deeper layers learn more specialized, client-specific
representations [Luo et al., 2021]. Specifically, we prioritize
parameters in the initial layers that undergo larger changes,
as they likely embody fundamental patterns vital for model
generalization. In contrast, we upload a more extensive set
of parameters for deeper layers to retain a diverse range of
complex, client-specific features necessary for personalized
performance. Formally, we denote the upload proportion
for the i-th layer as UP i, computing it based on the layer’s
position within the network:

UP i := min(max(
i

L
, 0.1), 1) (5)

where UP i is constrained to be at least 0.1 to ensure that
every layer contributes to the global model aggregation, but
not more than 1, reflecting a full update contribution.

To identify and select significant weights for sharing, we
calculate the absolute weight fluctuation value of the local
model within each layer after local training:

∆θ
(i,t)
k := |θ̂(i,t)k − θ̃

(i,t)
k | (6)

Then, to focus on parameters that have undergone notable
changes, we identify the top UP i parameters from each layer
i in k-th client model based on their fluctuation values after
the t-th training round:
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Algorithm 1 FLAYER
Input: N clients, ρ: client joining ratio, L: loss function,
Θ0

g: initial global model, η: base local learning rate, s: the
hyperparameter of FLAYER.
Output: Well-performing local models Θ̃1, . . . , Θ̃N

1: Server sends Θ0
g to all clients to initialize local models.

2: for iteration t = 1, . . . , T do
3: Server samples a subset Ct of clients according to ρ.
4: Server sends Θt−1

g to |Ct| clients.
5: for Client k ∈ Ct in parallel do
6: Client k initializes local model Θ̃t

k by Equation (2).

7: Client k obtains Θ̂t
k by Equation (3) - (4).

8: ▷ Local model training
9: Client k obtains masked Θt

k by Equation (5) - (9).
10: Client k sends Θt

k to the server. ▷ Uploading
11: end for
12: Server-side Aggregation:
13: Server obtains Θt

g by Θt
g ←

∑
k∈Ct

nk∑
j∈Ct nj

Θt
k by

Equation (10).
14: end for
15: return Θ̃1, . . . , Θ̃N

S
(i,t)
k := top percent

(
∆θ

(i,t)
k , UP i

)
(7)

To manage which parameters are uploaded from each layer
i of a local model on client k, we use a binary mask matrix,
M t

k, which has the same dimensions as the parameter matrix
θ̂tk. Initially, all elements of this matrix are initialized to
one. Each item m

(i,t)
j,k in M

(i,t)
k is determined by whether

the corresponding parameter θ(i,t)j,k in ∆θ
(i,t)
k belongs to the

subset of parameters with the highest weight changes, S(i,t)
k .

This setup uses the following rule:

m
(i,t)
j,k =

{
1, if θ(i,t)j,k ∈ S

(i,t)
k

0, otherwise
(8)

Finally, we obtain the essential parameter θtk required for
uploading by multiplying the θ̂tk with the binary mask M t

k.

θtk := θ̂tk ⊙M t
k (9)

During the server aggregation in round t, each client k ∈
Ct provides updated parameters θtk and has a local dataset
of size nk. Let Θt−1

g denote the global parameters from
the previous round and I be the indicator function. The
condition

∑
k∈Ct nkI(θtk[i] ̸= 0) > 0 checks if at least one

client provides a non-zero update for parameter i, and ensures
that we only average over those clients that have a non-zero
parameter, preventing division by the total number of clients
when many of them do not contribute to that parameter. The
aggregation process is defined as:

Θt
g[i] =


∑

k∈Ct nk θ
t
k[i]∑

k∈Ct nk I(θtk[i] ̸= 0)
, if

∑
k∈Ct nk I(θtk[i] ̸= 0) > 0,

Θt−1
g [i], otherwise.

(10)

FLAYER employs selective weight sharing to balance
global knowledge with client-specific adaptation,
distinguishing it from FedMask [Li et al., 2021a] and
FedSelect [Tamirisa et al., 2024]. While FedMask, which
also achieves personalization using a heterogeneous binary
mask with a small overhead. However, FedMask does not
consider the unique characteristics of different layers, failing
to capture layer-specific information. Moreover, FedMask’s
binary parameter aggregation is insufficient for complex
tasks, such as CIFAR-100. FLAYER applies a layer-
wise masking strategy informed by parameter significance
and layer position. This preserves universal features in
early layers and ensures rich adaptation in deeper layers.
Moreover, unlike FedSelect, which uses the Lottery Ticket
Hypothesis to incrementally identify and expand “winning”
subnetworks, which adds complexity due to evolving
subnetworks, FLAYER retains a stable global structure, thus
reducing computational overhead while maintaining fine-
grained personalization. This approach effectively integrates
fundamental representations and diverse local insights,
resulting in higher accuracy and more stable convergence in
non-IID settings.

4 Evaluation Setup
4.1 Platforms and Workloads
To evaluate the performance of FLAYER, we use a four-
layer CNN [McMahan et al., 2017] and ResNet-18 [He et
al., 2016] for CV tasks, training them on three benchmark
datasets: CIFAR-10, CIFAR-100 [Krizhevsky et al., 2009],
and Tiny-ImageNet [Chrabaszcz et al., 2017]. For the NLP
task, we train fastText [Joulin et al., 2017] on the AG News
dataset [Zhang et al., 2015]. We use the Dirichlet distribution
Dir(β) with β = 0.1 [Lin et al., 2020; Wang et al., 2020]
to model a high level of heterogeneity across client data.
Following FedAvg, we use a batch size of 10 and a single
epoch of local model training per iteration. We execute the
training process five times for each task and calculate the
geometric mean of training latency and inference accuracy
until convergence. Our experiments consider 20 clients.
The number of layers in the head for CNN, ResNet-18, and
fastText is 1, 2 and 1, respectively. Following FedALA, we
set a base learning rate of 0.1 for ResNet-18 and fastText
and 0.005 for CNN during local training. All experiments
were conducted on a multi-core server with a 24-core 5.7GHz
Intel i9-12900K CPU and an NVIDIA RTX A5000 GPU with
24GB of GPU memory.

4.2 Competitive Baselines
We compare FLAYER with eight other pFL methods
alongside FedAvg, including model-wise aggregation
methods APPLE, Ditto and FedAMP, layer-wise aggregation
methods FedPer, FedRep, GPFL [Zhang et al., 2023a] and
FedCP [Zhang et al., 2023c], and element-wise FedALA
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CNN ResNet-18 fastText

Method CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet AG News

FedAvg 59.16±0.56 33.08±0.61 18.86±0.29 86.95±0.39 37.08±0.43 20.32±0.20 80.12±0.31
APPLE (model) 89.60±0.16 54.45±0.24 39.42±0.49 89.78±0.19 57.29±0.30 43.26±0.55 95.37±0.23
Ditto (model) 89.48±0.04 47.68±0.59 33.89±0.08 88.70±0.18 48.46±0.89 36.37±0.52 94.66±0.18
FedAMP (model) 89.31±0.17 47.77±0.46 33.82±0.33 88.52±0.22 48.75±0.49 35.83±0.25 94.02±0.11
GPFL (layer) 88.05±0.19 59.38±0.42 45.05±0.39 88.86±0.20 51.06±0.39 42.28±0.47 93.78±0.12
FedPer (layer) 89.55±0.28 49.15±0.57 39.61±0.24 89.20±0.21 54.26±0.43 42.38±0.55 95.07±0.16
FedRep (layer) 90.62±0.18 51.45±0.31 41.79±0.52 90.29±0.29 53.94±0.40 45.98±0.72 96.47±0.15
FedCP (layer) 91.23±0.15 58.27±0.28 45.22±0.30 86.65±0.24 46.72±0.73 41.69±0.41 96.04±0.14
FedALA (element) 90.84±0.09 56.98±0.18 45.10±0.25 91.30±0.35 58.65±0.26 49.09±0.89 96.58±0.10
FLAYER 91.66±0.05 60.50±0.33 45.88±0.29 91.68±0.21 60.68±0.42 50.12±0.36 98.27±0.22

Table 1: The average inference accuracy (%) across all clients on CIFAR-10, CIFAR-100, Tiny-ImageNet and AG News.

Model CNN ResNet-18

Dataset Method #Iter. Total time (s) #Iter. Total time (s)

CIFAR-10

FedAvg 157 1256 179 5191
APPLE 190 6650 130 31070
Ditto 51 1071 172 11696
FedAMP 47 #517 191 7067
GPFL 37 592 210 7980
FedPer 156 1248 183 5307
FedRep 169 2028 185 6845
FedCP 231 3003 127 4064
FedALA 152 1520 133 5187
FLAYER 78 858 53 #2067

CIFAR-100

FedAvg 180 1620 181 5430
APPLE 195 6825 25 6000
Ditto 57 1254 101 6868
FedAMP 61 671 173 6401
GPFL 450 7200 442 17238
FedPer 101 909 184 5704
FedRep 69 828 179 6802
FedCP 200 2600 120 3960
FedALA 120 1200 76 2660
FLAYER 27 #324 58 #2378

Tiny-ImageNet

FedAvg 48 2016 74 5920
APPLE 69 9867 37 17427
Ditto 35 3150 174 29754
FedAMP 28 1316 84 7392
GPFL 72 4032 73 7081
FedPer 31 1302 78 6240
FedRep 39 1794 115 10350
FedCP 118 4484 75 5775
FedALA 64 2944 48 4368
FLAYER 16 #896 18 #1782

Table 2: The average computation cost for CV tasks.

on four popular benchmark datasets in inference accuracy.
In addition, we also evaluate the performance of FLAYER
in terms of the computation cost, hyperparameter, layer
similarity, data heterogeneity, scalability, and applicability.

5 Experimental Results
5.1 Overall Performance

Inference accuracy. Table 1 compares the inference
accuracy of FLAYER with eight other pFL methods in
CV and NLP domains with Dir(0.1). APPLE gives the
highest accuracy in the model-wise category, but with a high
computation cost. FedPer uses a simple local aggregation
strategy, utilizing global base layers and local head layers
to initialize the local model, improving accuracy by an
average of 17.66% over FedAvg. Building on this, GPFL
and FedCP seek to integrate global and personalized features:

CNN ResNet-18

Hyperparameter (s) 3 2 1 3 2 1

Accuracy (%) 53.58 54.42 #60.50 59.80 #60.68 60.16

Table 3: The inference accuracy (%) of FLAYER on CIFAR-100
by using CNN and ResNet-18 with various s.

GPFL adjusts base layers, while FedCP focuses on head
layers. Although both outperform FedRep and FedPer with
a 4-layer CNN, they fail on deeper models like ResNet-
18. In contrast, FedRep extends FedPer by alternating head
and base layer training, boosting accuracy by 19.28% over
FedAvg. FedALA enhances FedPer by incorporating global
information into local head initialization, achieving a 21.85%
improvement. Previous pFL methods acknowledge the
distinct roles of base and head layers in non-IID settings and
integrate global and local information only at initialization.
However, they fail to adapt these layers effectively during
local training, limiting the capture of on-demand local
information and slowing convergence. In contrast, FLAYER
integrates global and local knowledge in a layer-wise manner
throughout initialization, local training, and model updating,
achieving the highest test accuracy among all pFL methods
and improving over FedAvg by 23.31%.

Computation cost. Table 2 compares the computation
cost of FLAYER with other pFL methods and FedAvg,
measured by the training time required for convergence.
Except for CIFAR-10 with CNN, where FedAMP and GPFL
bring the lower training cost (but with poor inference
accuracy) than FLAYER, our approach gives the lowest
computation cost across all other tasks, reducing total training
cost by an average of 58.9% (up to 80.1%) compared to
FedAvg. Specifically, model-wise methods like APPLE
and Ditto involve complex calculations leading to high
overhead. FedRep trains the base and head layers separately,
which incurs significant training costs. FLAYER effectively
incorporates both local and global information across all
layers, resulting in fewer rounds needed for convergence
compared to FedALA, with an average reduction of 52.7%
in total training time.
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Heterogeneity Scalability Applicability
Methods Dir (0.5) Dir (0.1) Dir (0.01) 20 clients 50 clients 100 clients Acc. Imps.
FedAvg 40.27±0.28 37.08±0.43 43.74±0.38 37.08±0.43 34.56±0.25 33.08±0.41 60.68±0.42 24.77
APPLE 46.22±0.23 57.29±0.30 74.52±0.19 57.29±0.30 58.09±0.24 48.46±0.32 - -
Ditto 28.98±0.21 48.46±0.89 72.94±0.22 48.46±0.89 46.08±0.19 43.42±0.37 58.49±0.21 10.03
FedAMP 29.01±0.28 48.75±0.49 73.12±0.17 48.75±0.49 46.49±0.44 43.74±0.20 60.72±0.27 11.97
GPFL 44.32±0.30 51.06±0.42 74.59±0.21 51.06±0.42 48.30±0.29 44.61±0.32 - -
FedPer 36.89±0.38 54.26±0.43 73.52±0.15 54.26±0.43 51.24±0.39 47.67±0.36 63.13±0.23 8.87
FedRep 36.10±0.33 53.94±0.40 75.08±0.18 53.94±0.40 50.10±0.30 45.80±0.27 61.33±0.17 7.39
FedCP 45.70±0.46 46.72±0.38 69.42±0.32 46.72±0.38 42.86±0.33 40.19±0.24 - -
FedALA 47.11±0.22 58.65±0.26 75.24±0.11 58.65±0.26 59.46±0.23 58.80±0.41 63.55±0.58 4.90
FLAYER #47.47±0.34 #60.68±0.42 #77.39±0.24 #60.68±0.42 #61.70±0.30 #59.96±0.39 - -

Table 4: The inference accuracy (%) of eight FL methods across varying levels of statistical heterogeneity and scalability, and the performance
improvement (%) when applying our approach to them using ResNet-18 on CIFAR-100.

5.2 Evaluation on Personalization Layers
Table 3 shows inference accuracy for a 4-layer CNN and
ResNet-18 with varying sizes (termed as s) of the head layers.
For ResNet-18, the highest inference accuracy is achieved
with s set to 2, focusing personalization on the final two
layers. For the 4-layer CNN, s is set to 1, with the remaining
layers updated using the global model.

5.3 Layer Similarity
We measure Centered Kernel Alignment (CKA) [Kornblith
et al., 2019] similarity across clients’ model layers to
understand how pFL methods balance personalization and
generalization on non-IID data. Figure 2 compares FedAvg,
APPLE, FedRep, FedALA, GPFL, FedCP, and FLAYER
on CIFAR-10. After training, base-layer (layer 1, 2, 3)
similarity increases for all methods, indicating effective
global feature extraction. In contrast, the head layers
remain more distinct, focusing on client-specific patterns.
FLAYER achieves moderate similarity in both base and
head layers, suggesting a balanced integration of global
and local features. Additionally, under FedAvg, the last
layer is a little higher than that of the second-to-last layer
due to FedAvg aggregating local models by averaging
their parameters. The last layer, having fewer parameters
(especially in classification tasks with a moderate number
of classes), experiences less variability and is more directly
influenced by the averaging process.

5.4 Evaluation on Data Heterogeneity
We examine the impact of statistical heterogeneity on
FLAYER and other eight pFL methods, using 20 clients
under three settings: β = 0.5, β = 0.1, and β = 0.01.
Here, smaller β values indicate higher data heterogeneity,
with β = 0.1 serving as our baseline. As summarized
in Table 4, FLAYER and FedALA deliver comparable
performance when heterogeneity is low (β = 0.5). However,
under more challenging scenarios (β = 0.01, and β = 0.1),
FLAYER consistently outperforms all competing methods,
achieving the highest accuracy. Additionally, we observe
that some pFL methods, such as Ditto and FedAMP, exhibit
lower accuracy than FedAvg under β = 0.5. This
outcome may occur because they rely too heavily on local
information, overshadowing the benefits of aggregated global
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Figure 2: The average CKA similarities of the same layers in
different local models with CIFAR-10 under Dir(0.1).
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Figure 3: Learning curves of FLAYER and five baselines on
CIFAR-100 using ResNet-18 model.

knowledge and thus leading to suboptimal generalization.
Figure 3 presents the learning curves of FedAvg, Ditto,
GPFL, FedPer, FedALA, and our approach. FLAYER
converges more rapidly and achieves higher accuracy than
all baselines. Moreover, as the degree of non-IID data
distribution increases, all pFL methods tend to improve
in accuracy, although some, such as FedRep and GFPL,
require more communication rounds to converge. In contrast,
FLAYER ’s dynamic learning capability enables it to reach
convergence even under these challenging conditions rapidly.
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Figure 4: The ablation study using Resnet-18 on CIFAR-100,
conducted under a Dir(0.1) distribution.

5.5 Scalability
To evaluate the scalability, we vary the number of clients from
20 to 100 on CIFAR-100 with ResNet-18 under the Dir(0.1)
heterogeneity setting. Table 4 compares the average inference
accuracy between FLAYER and other pFL methods. We
can see that FLAYER consistently outperforms others across
various scales of client quantity. However, we notice that the
accuracy is higher with 50 clients compared to 20 clients for
both FedALA and FLAYER. With 50 clients, the learning
algorithm has access to more diverse training data than with
20 clients, improving the generalization ability and overall
accuracy of the learned model. While a decrease in accuracy
across all methods is observed as the client count increases
from 50 to 100, FLAYER experiences a decline of less than
2%. In contrast, the APPLE method shows a significant drop
in performance, with a 9.6% decrease in inference accuracy
in the same scenario. This underlines the efficiency of
FLAYER in managing larger numbers of clients, particularly
in scenarios characterized by increased scalability demands.

5.6 Applicability
Our evaluation so far applied FLAYER to FedAvg. We
now apply FLAYER to other FL methods to evaluate
the generalization ability of our approach. Note that
FLAYER does not replace the foundational architectures of
an FL method. Table 4 reports the inference accuracy and
improvements achieved after applying our approach to an
underlying FL method. FLAYER improves the accuracy of
all pFL methods, boosting the accuracy by 4.90% to 11.97%.

5.7 Ablation Study
Figure 4 illustrates how each component impacts both
convergence speed and final accuracy. Figure 4(a) shows
that Agg. Only contributes the least to convergence speed
yet still improves accuracy over standard methods. For
example, FedPer requires 184 iterations to converge and
achieves an accuracy of 54.26%, Agg. Only reaches 55.11%
accuracy in just 63 iterations, underscoring the benefit of
even partial global aggregation over purely local strategies.
Meanwhile, LR. Only delivers the highest overall accuracy,
whereas Masking Only excels in accelerating convergence.
Figure 4(b) indicates that combining the LR and Masking

schemes yields only about a 1% drop in accuracy compared
to using all three components. Notably, FLAYER achieves
better accuracy at 53 iterations than its counterpart without
Aggregation, suggesting that Agg.Only can be introduced
later in training to boost performance further. These findings
also highlight that LR. Only and Masking Only schemes are
highly effective in non-IID settings.

6 Related Work
Previous pFL methods for managing non-IID data issues
typically fall into two categories: personalizing the global
model and customizing individual models for each client.
Our work focuses on learning personalized models, where
pFL tailors individual models to each client’s data, primarily
via weighted aggregation for local model adaptation.

Model-wise aggregation. Train personalized models for
each client by combining clients’ models using weighted
aggregation. For example, FedFomo [Zhang et al.,
2020] employs a distance metric for weighted aggregation,
while APPLE [Luo and Wu, 2022] introduces an adaptive
mechanism to balance global and local objectives. FedAMP
[Huang et al., 2021] uses attention functions for client-
specific models, and Ditto [Li et al., 2021b] incorporates
a proximal term for personalized models. However,
existing model aggregation methods may overlook complex
variations and unique characteristics in client data, leading to
suboptimal personalization.

Layer-wise aggregation. Customizing different layers has
been explored by FedPer [Arivazhagan et al., 2019] and
FedRep [Collins et al., 2021], and extended by approaches
like GPFL [Zhang et al., 2023a] and FedCP [Zhang et al.,
2023c], which aim to incorporate global and personalized
information within the base or head layers. pFedLA [Ma
et al., 2022] further uses hypernetworks to learn layer-wise
aggregation weights at a high computational cost. However,
all these methods overlook the influence of diverse local data
on both base and head layers, constraining their potential to
improve accuracy.

Element-wise aggregation. This is the most fine-grained
local aggregation approach, aggregating at the parameter
level. FedALA [Zhang et al., 2023b] introduces an element-
level aggregation weight matrix in the head layers, enhancing
accuracy across various tasks. However, extra computation is
required for weight calculation and does not account for the
distinct roles and learning abilities of different layers during
training.

7 Conclusion
We have presented FLAYER, a new layer-wise pFL
approach to optimize FL in the face of non-IID data.
FLAYER adaptively adjusts the aggregation weights and
learning rate and selects layer-wise masking to effectively
incorporate local and global information throughout all
network layers. Experimental results show that FLAYER
achieves the best inference accuracy and significantly reduces
computational overheads compared to existing pFL methods.
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