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Abstract

Label shift is a prevalent phenomenon encountered
in open environments, characterized by a notable
discrepancy in the label distributions between the
source (training) and target (test) domains, whereas
the conditional distributions given the labels remain
invariant. Existing label shift methods adopt a two-
step strategy: initially computing the importance
weight and subsequently utilizing it to calibrate the
target outputs. However, this conventional strategy
overlooks the intricate interplay between output ad-
justment and weight estimation. In this paper, we in-
troduce a novel approach termed as One-step Label
Shift Adaptation (OLSA). Our methodology jointly
learns the predictive model and the corresponding
weights through a bi-level optimization framework,
with the objective of minimizing an upper bound on
the target risk. To enhance the robustness of our pro-
posed model, we incorporate a debiasing term into
the upper-level classifier training and devise a regu-
larization term for the lower-level weight estimation.
Furthermore, we present theoretical analyses about
the generalization bounds, offering guarantees for
the model’s performance. Extensive experimental
results substantiate the efficacy of our proposal.

1 Introduction

The success of traditional machine learning methodologies
is generally contingent on the closed environment hypoth-
esis, which presumes that the training and testing data
are independently and identically distributed [Mohri, 2018;
Bengio et al., 2021]. However, real-world learning tasks fre-
quently occur in open environments [Zhou, 2022], where
data distributions may undergo temporal variations, poten-
tially resulting in significant performance degradation of
closed-environment systems [Sugiyama and Kawanabe, 2012;
Huang and Ren, 2024]. Label shift [Fan et al., 2023;
Li et al., 2024; Fan er al., 2024al], which represents a typ-
ical scenario in open environments, assumes that the la-
bel distributions in the source and target domains are dis-
tinct (Ps(Y) # P,(Y)), whereas the conditional distributions
given the labels remain consistent (Ps(X|Y) = P,(X|Y)).
To illustrate, in the realm of COVID-19 diagnosis, incidence

rates fluctuate across diverse regions, yet the symptomatic
manifestations of pneumonia remain consistent. Another per-
tinent instance concerns bird identification, as exemplified
in Figure 1. The migratory patterns of birds can induce
seasonal fluctuations in their distribution within the same
geographical area. Notably, despite these seasonal shifts,
their morphological characteristics remain invariant. Given
the aforementioned examples, label shift demonstrates con-
siderable potential for application, thereby emerging as a
pivotal area of research in recent years [Wei er al., 2024;
Luo and Ren, 2024].

To mitigate the consequences of label shift and attain pre-
cise target output results, existing methodologies typically em-
ploy a two-step strategy to address the label shift issue [Zhao
et al., 2021; Tian et al., 2023]. Initially, they calculate im-
portance weight, which is subsequently followed by the ad-
justment of posterior probabilities for target samples. In
the first step, certain research endeavors utilize a pre-trained
source classifier to approximate the confusion matrix and
class probabilities, and estimate the importance weight based
on distribution transformation theory [Lipton er al., 2018;
Azizzadenesheli et al., 2019]. Meanwhile, other studies derive
the importance weight by minimizing Kullback-Leibler (KL)
divergence between the weighted source distribution P¥ (X)
and the target distribution P;(X) [Alexandari et al., 2020;
Sipka et al., 2022]. Additionally, some methods aim to en-
hance the accuracy of weight estimation by incorporating
the prior parameters of the target distribution [Sulc and Matas,
2019; Ye et al., 2024b]. In the second step, existing approaches
generally involve either direct or indirect adjustment of the pos-
terior probabilities for target samples. Specifically, indirect ad-
justment methods leverage the equivalence between weighted
source and target loss expectations to minimize the importance-
weighted empirical risk, thereby obtaining the final target
classifier and correcting the target outputs [Garg et al., 2020;
Fan et al., 2024a]. On the other hand, direct adjustment meth-
ods combine the importance weight with the outputs gener-
ated by the source classifier, ensuring unbiased target outputs
directly under the framework of distribution transformation
theory [Wen et al., 2024].

Although the aforementioned methods have demonstrated
outstanding performance within the label shift framework,
there are at least two critical challenges that require careful
consideration. Firstly, when tackling the label shift problem,
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Figure 1: An illustrative instance of label shift can be observed within the domain of bird identification. During the cold winter season, both
the egrets and seagulls migrate to warmer southern regions, while parrots, eagles, and woodpeckers do not engage in migration. Consequently,
in the same area, the distribution of bird species varies with different seasons (Ps(Y") # P:(Y)). However, the appearance of birds remains

constant regardless of seasonal changes (Ps(X|Y) = P,(X|Y)).

precise importance weight is instrumental in deriving accurate
target outputs, and vice versa. However, prevalent label shift
methods typically follow a sequential process of weight estima-
tion followed by output adjustment, overlooking the intricate
interplay between these two components. Secondly, numerous
traditional methodologies are heavily contingent upon the effi-
cacy of the pre-trained source classifier; in instances where this
classifier exhibits suboptimal performance, the resultant bias
in weight estimation can be substantial, ultimately culminating
in a deterioration of the final target outputs.

In this paper, to effectively address the aforementioned chal-
lenges, we propose a novel bi-level approach denominated
One-step Label Shift Adaptation (OLSA) via Robust Weight
Estimation, as shown in Figure 2. Specifically, the upper-level
task minimizes the unbiased target loss utilizing importance
weight, whereas the lower-level objective estimates this im-
portance weight based on target outputs. Therefore, weight
estimation and classifier training can be jointly done through
a bi-level optimization strategy. To enhance the robustness
of our proposed model, we incorporate a bias correction term
in the upper-level task. Under mild assumptions, theoretical
analysis demonstrates that OLSA can attain the same expected
risk as conventional label shift methods. Furthermore, we
introduce a regularization term in the lower-level objective to
mitigate the dependency of weight estimation on the trained
classifier, thereby ensuring stable performance across diverse
label shift scenarios. We derive a generalization bound for the
final classifier. Finally, comprehensive experimental results
are presented to validate the efficacy of OLSA. In summary,
the contributions of our research are outlined as follows:

* Our research focuses on developing a method to address
the label shift issue in a single step. This strategy avoids
the necessity for intermediary steps, thereby enabling a
more streamlined and efficient process for training the
target classifier and estimating importance weight.

* To enhance the robustness of our proposed model, we
incorporate a debiasing term into the upper-level task and
devise a regularization term for the lower-level objec-
tive. Under mild assumptions, theoretical proof has been
provided for the efficacy of our approach.

* We demonstrate the effectiveness of our approach across
diverse datasets. The experimental results consistently
indicate that our approach outperforms other comparative
methods in the majority of cases, particularly in scenarios
involving significant label shifts.

2 Related Work

Label shift is a prevalent scenario in open environments,
sparking significant interest among researchers [Tasche, 2017;
Bai et al., 2022]. This phenomenon occurs when there ex-
ists a disparity in label distributions between the source and
target domains, while preserving the same conditional distribu-
tion [Wu et al., 2021; Fan et al., 2023]. Previous works, such
as BBSE [Lipton et al., 2018] and RLLS [Azizzadenesheli et
al., 2019], estimate importance weight using the confusion
matrix and predicted target labels, followed by retraining a
new target classifier within the Weighted Empirical Risk Mini-
mization (WERM) framework. In addition, MLLS [Alexan-
dari et al., 2020] and SCML [Sipka et al., 2022] estimate
importance weight by minimizing the KL divergence between
the weighted source and target distributions, and directly cor-
rect the target outputs through a posterior adjustment strategy.
Building on these foundations, MAP [Sulc and Matas, 2019]
and MAPLS [Ye et al., 2024b] introduce the Bayesian pos-
terior of the target label distribution parameters given data.
From a novel perspective of matching the source label distri-
bution, CPM [Wen et al., 2024] maintains the same theoretical
guarantees as traditional feature distribution matching frame-
works, while significantly enhancing computational efficiency
due to the direct matching of label variables. However, the
aforementioned approaches employ a two-step strategy, which
neglects the interaction between output adjustment and weight
estimation.

One-step Domain Adaptation is designed to directly learn
an effective target classifier under distribution shift. Vapnik’s
principle [Vapnik, 2013] emphasizes the avoidance of solving
a general problem as an intermediary step when confronted
with limited information, thereby highlighting the significance
of one-step approach. DAOT [Peng et al., 2018] conceptual-
izes the feature distribution alignment process as a one-step
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Figure 2: llustration of the OLSA framework. We employ source inputs, target inputs, and importance weight to train the target classifier,
while leveraging target outputs to estimate the importance weight. Both components are jointly optimized through a bi-level strategy, ultimately

achieving a dynamic equilibrium.

transformation and implements it through a single-layer con-
volutional neural network. OCSA [Zhang et al., 2020] intro-
duces a one-step strategy for accommodating covariate shifts,
without the intermediate step of estimating the ratio between
training and test input densities. Despite these advancements,
the above methods have not taken into account how to perform
one-step learning in the label shift scenario. ADM-OS [Fan
et al., 2024b] emerges as a tailored one-step method for label
shift, which jointly learns the predictive model and impor-
tance weight. However, empirical findings have indicated
that ADM-OS may exhibit limited robustness under specific
shifting conditions.

3 Problem Setting

3.1 Traditional WERM Framework

We employ stochastic variables X € X, Y € ) to model the
features and labels respectively, where X' = R and Y is a
discrete set as {1,2, ..., K}. d is the feature dimension, and
K represents the number of categories. We have access to la-
beled source data (X, Ys) = {z;, y; }1, and unlabeled target
data X; = {x;}"",, which are independently and identically
drawn from the source distribution Ps and target distribu-
tion P; respectively. We define L(-,-) : Ax_1 X Y — R!
as the loss function and h € H: X — Ag_1 as the
classifier, where A _1 denotes the standard K -dimensional
probability simplex. Under the label shift assumption, i.e.,
Py(X|Y) = P(X]Y) and Ps(Y) # P,(Y), if we give a hy-
pothesis space H and a loss function L, the goal of label shift
setting is to find an optimal target classifier h; € H which
minimizes the following weighted loss [Lipton e al., 2018;
Azizzadenesheli et al., 2019; Garg et al., 2020; Fan et al.,
2024al:

Rr(h;w*) = Ex,yy~p, [L(h(X),Y)]

= Ecxyyr, o (V) LX), V),

where w* € R is the importance weight and w*(Y) =
P.(Y)/Ps(Y). In practical scenarios, the veritable weight w*

is commonly undisclosed. If w* is approximated as w, the
target classifier can be derived by minimizing the following
empirical loss:

Rahid) = =Y o) L) w). @

3.2 The OLSA Approach

In this section, we aim to address the label shift issue using a
one-step strategy. Inspired by the theory of hyper-parameter
optimization [Liu et al., 2022; Liu et al., 2024b], we treat the
importance weight w as a hyper-parameter to be optimized,
and then introduce a bi-level optimization technique for its
solution. Specifically, the upper-level loss is employed for
training the target classifier, while the lower-level loss is uti-
lized for estimating importance weight. Now, let us introduce
the specific forms of upper-level and lower-level losses respec-
tively.

Upper-level Loss. Existing label shift methods for esti-
mating importance weight require the availability of tar-
get outputs. Motivated by this observation, we attempt to
investigate an innovative approach that incorporates unla-
beled target data into training loss. The most prevalent ap-
proach is semi-supervised learning [Schmutz ef al., 2023;
Ye et al., 2024al, which leverages both labeled and unlabeled
data simultaneously to train the classifier. However, due to the
discrepancy between the source and target distributions, it is
unreasonable to directly apply traditional methods. Therefore,
we introduce the following weighted semi-supervised loss:

Rua(hid) = Ra(hi ) + 2 3" Hy(h(ey), @)
j=1

where Hy(:) := [,,P,(Y|-)L(h(-),Y)dY represents a label-
independent component, while 5 € (0,1) is a balance pa-
rameter that governs the equilibrium between the labeled and
unlabeled terms. However, the introduction of the second
item naturally increases the risk of traditional label shift loss
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R. Therefore, we attempt to leverage labeled data on label-
independent term to mitigate potential bias and design the
following upper-level loss:

Roau(hit) = " 05 Lz, 1)
N ED W AUTHEES SrAURC) B

“)

where H,(:;w) := w(Y) [, Ps(Y]-)L(h(-),Y)dY and the
source conditional distribution Ps(Y'|-) can be approximated
by the output of source classifier with the softmax layer. For-
tunately, our approach achieves the same expected risk as
traditional label shift methods, as demonstrated in Theorem 1.

Theorem 1. Assume the importance weight W reaches its
optimal value P;(Y')/Ps(Y'), we have

E [Roou(hs #)] = E [Re(hiw)] 5)

The comprehensive proof of the aforementioned theorem is
provided in supplementary materials. On this basis, given the
assumption that the importance weight w is known, we can
directly optimize the loss function Rpen (h; ) in order to
obtain the target classifier. Subsequently, the critical task is to
determine an accurate approach for estimating the importance
weight w.

Lower-level Loss. In the first, according to the properties
of distributions, we give a simple estimation strategy for the
weights w:

P(Y " P(Y|x,

oo B ) _ 21 Bl Ig)' ©
Py(Y) mPs(Y)

Since the labels of the source data are known, we can estimate

the source label distribution P5(Y") through statistical class

frequency, i.e.,

P(Y =k) = %Z; 1Y, =khLkelK]. (7

On this basis, the key issue becomes how to estimate the
conditional distribution P;(Y|X). A classic approach is to ap-
proximate the true conditional distribution by considering the
output of softmax layer in a deep neural network, i.e., hi(z) ~
P,(Y|X). However, previous studies [Guo et al., 2017,
Liu et al., 2024a] have demonstrated that conventional neural
networks encounter challenges in accurately estimating class
posterior probabilities, despite their proficiency as classifiers.
Most label shift works use bias-corrected temperature scal-
ing (BCTS) [Alexandari et al., 2020; Sipka et al., 2022] to
calibrate outputs. However, as it is a post-processing tech-
nique, it is not applicable to our one-step approach. Therefore,
for good classifier calibration, we introduce ~-loss, which is
define as follows:

—log (hy(z)) L
L(h(x),y;fy){ g(l—h) Z %) others. ®)

By minimizing the expectation of the above loss [Sypherd et
al., 2022], we derive the optimal outputs as

P(k|x)”
h

k( ) Z P ( | )'y )
The parameter « has the ability to ’soften’ the outputs. When
v = 1, the output is consistent with traditional softmax out-
put, and as v — 0, the output h(z) gravitates towards 1/K,
indicating maximum uncertainty. By combining Eq. (6), we

estimate the importance weight w as
D o/ T T D wRYIC)
 mPy(Y)  mPy(Y)

Thus, we can design the lower-level loss as follows:

vk € [K]. 9)

2T(h). (10)

W = argmin, g, p, (vy=1 0 —T()5. (A1)
However, the aforementioned estimation is heavily influenced
by the classifier outputs h(z). If the calibration effect is poor,
it can lead to significant weight bias. Thus, we try to add a
regularization term to alleviate this situation.

1 2
KP,(Y)

W= argmin ||w—T(h)||§+)\ w—

w>=0,wT Py (Y)=1

2
(12)
Where A controls how much the label distribution is skewed.
When A — oo, w = KP =P vy and P,(Y) = +. This regu-
larization term ensures that the target dlstnbution is balanced
even when the estimation deviation is large, thus ensuring the
stability of training. Through the transformation of Eq. (12),
we get the final lower-level loss as
1 2

W = arg minwto’prs(y)zl 1t N

2
(13)
Total Loss. By combining the upper-level loss Eq. (4) and
lower-level loss Eq. (13), we have the total loss as follows:

min Rpent (b, @) = &+ 32 @ (y:) L(h(x:), yi:7)

H(h(zi);7, w)> ,

T(h)+A %5y
[ESY

+ (5, > Hilh(a;)in) - 2
2

st W = argmingyg, 7 p, (v)=1 ||W —

2
(14)
Then, we prove an upper bound for the generalization error of
OLSA as follows.

Theorem 2. Give n samples drawn from the source distribu-
tion Ps, m samples drawn from the target distribution P; and
bound loss function L and H. Then, there exists two constants
K1, ko > 0, that depends on B, w*, L and H, the following
generalization bound holds with probability at least 1 — 0,

Rr(h;w*) < Rpem (h; ®) + 2Rady4m
log(4/4)

n+m’
(15)

+ fr [ — w*||2 + K2

where Rad,, 4, is the Rademacher complexity.
The detailed proof can be found in supplementary materials.
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3.3 Optimization

The aforementioned loss constitutes a bi-level problem, neces-
sitating the utilization of an optimization framework grounded
in implicit gradients (IG). This strategy enables precise mod-
eling and optimization of the intricate interplay between the
estimated weight w and model parameters h. Specifically, the
IG derived from Eq. (15) can be mathematically formulated
as follows:
- N - N dw™ - 2
VRpem(h, W) = VipRpem(h, w) + an Vo Rpem(h, w),
——
IG
(16)

where V), and V;, represent the partial derivatives of the bi-
variate function. Traditional bi-level optimization approaches
derive the IG formula through the meticulous application of
implicit function theory. However, the computation of IG
presents inherent difficulties, primarily arising from the com-
plexities involved in matrix inversions, second-order partial
derivatives, and constraints. In order to effectively compute IG,
it is evident that the optimal solution w* of the unconstrained
lower-level loss function is formulated as follows:

ey hzy)
A mPs(Y)
o =

1

ARy 17)
1+A

Since we adopt the softmax layer in our model, the output

h(z) satisfies that h(z) = 0 and Zfil hi(z) = 1 for any

x ~ Py(X). Thus we have

{ w* = 0,
M k() 18)
. K #_‘_)\L (

w TPS(Y) = Zi:l mlf]{ =1

On this basis, we can derive the optimal solution for
the constrained lower-level loss as w*, and compute the
IG (dw*™ / dh) directly. In conclusion, the procedure for opti-
mizing Eq. (14) is summarized in Algorithm 1.

Algorithm 1 Procedure of OLSA approach

Input: The labeled source samples {z;, y; }7;, unlabeled
target samples {z; ?jﬁl, trade-off parameters \, 5 and 7,
upper-level learning rate v and a pre-trained source classifier
hs(z) =~ Ps(Y|x).
Initialize: Initialize network parameters hy = hs;
for Iteration j = 1,...,T do

Lower-level: Update the weight @0, by optimizing Eq.
a7;

Upper-level: Update the network parameters ﬁj via
stochastic gradient descent calling Eq. (16);
end for .

Use the updated classifier hr to make predictions
{g:}724™ | on the unlabeled target samples;
Output: The ultimate classifier hy and the predicted labels
End procedure

4 Experiments

In this section, we commence by introducing the datasets, com-
parative methodologies, network architectures, and parameter
settings. Building upon these foundational elements, we un-
dertake a comprehensive evaluation of the performance and
effectiveness of the proposed OLSA approach, focusing on
two key aspects. For the initial component, we conduct a com-
parative analysis of OLSA with traditional label shift methods
across diverse shift scenarios and evaluation metrics. In the
second component, we offer detailed outcomes derived from
in-depth examinations of OLSA across various dimensions, en-
compassing an analysis of the deviation in importance weight
estimation, an exploration of various parameter configurations
and a visualization of label distribution bias.

4.1 Configuration

Dataset. In our study, we assess the performance and effi-
cacy of OLSA on the MNIST [LeCun et al., 1998], Fasion-
MNIST [Xiao et al., 20171, CIFAR10 [Krizhevsky et al., 2009]
and CIFAR100 [Krizhevsky et al., 2009] datasets, incorporat-
ing numerous artificial shifts. Specifically, we introduce two
distinct shift categories in our experimental setup: (1) Tweak-
One shift, where the probability of a specific source class is
altered to p (larger values of p result in more extreme label
shift), while the probabilities of remaining classes maintain
their original proportions. (2) Dirichlet shift, which generates
a Dirichlet distribution utilizing the concentration parameter
« (smaller values of « result in more extreme label shift), and
aligns the source label distribution with this Dirichlet distribu-
tion. For the MNIST and Fasion-MNIST datasets, we allocate
2000 samples each for the training and validation sets, and
10,000 samples for the test set. Analogously, for the CIFAR10
dataset, we assign 4000 samples each for training and vali-
dation, and 10,000 samples for testing. For the CIFAR100
dataset, the distribution is 10,000 samples for training, 5000
for validation, and 20,000 for testing. Notably, to guarantee
the robustness of training process, each class within the shift
set is represented by a minimum of 40 samples.

Compared methods. In the main experiment subsection,
we demonstrate the performance of OLSA by conducting a
comparative analysis with the following traditional label shift
techniques. (1) Wout-W illustrates the performance of the
base classifier in the scenario where the estimated weight is
excluded from consideration. (2) BBSE [Lipton et al., 2018]
and RLLS [Azizzadenesheli ef al., 2019] represent two label
shift methods that are grounded in the utilization of hard con-
fusion matrices, while BBSE-S and RLLS-S are based on the
employment of soft confusion matrices. (3) MLLS [Alexan-
dari et al., 2020], CML [Sipka et al., 2022], SCML [Sipka et
al., 2022], MAPLS [Ye et al., 2024b] and CPMCN [Wen et
al., 2024] are five advanced label shift methods that incorpo-
rate classifier calibration and obtain the target outputs directly.
(4) ADM-OS is a one-step label shift method that alternately
iterates between importance weight estimation and classifier
training.

Network architectures and evaluation indicators. We can
adopt any model as the base model for the source classifier,
and the choice of the model has implications for the accuracy
of subsequent importance weight estimation. In our primary
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Dataset | Shift Types | Wout-W BBSE BBSE-S RLLS RLLS-S MLLS CML SCML MAPLS CPMCN ADM-OS OLSA
a=0.1 | 0.8054 0.8363 0.8382 0.8364 0.8387 0.8514 0.8414 0.8425 0.8509 0.8515 0.8526 0.8702
a=0.5 | 08468 0.8707 0.8724 0.8707 0.8724 0.8767 0.8772 0.8773 0.8731 0.8761  0.8768  0.8878
a=1.0 | 0.8504 0.8796 0.8812 0.8796 0.8813 0.8860 0.8839 0.8854 0.8859 0.8861 0.8861 0.9014

MNIST a=50 | 08899 0.8941 0.8943 0.8941 0.8939 0.8934 0.8935 0.8935 0.8936 0.8933  0.8993  0.9024
p=0.3 | 0.8971 0.9019 0.9019 0.9019 0.9019 0.9013 0.9011 0.9009 0.9013 0.9009  0.9033 0.9079
p=0.5 | 0.8803 0.8895 0.8900 0.8895 0.8901 0.8911 0.8908 0.8907 0.8911 0.8898  0.8931 0.8991
p=0.7 | 0.8559 0.8749 0.8758 0.8749 0.8757 0.8738 0.8754 0.8752 0.8747 0.8738  0.8811 0.8860
p=0.9 | 0.7381 0.7981 0.7993 0.7981 0.7996 0.8082 0.7976 0.7997 0.8062 0.8106  0.8155 0.8391
a=0.1 | 06493 0.7495 0.6892 0.7495 0.6938 0.6774 0.7226 0.7271 0.6828 0.6773  0.7590 0.7770
a=0.5 | 06701 0.7498 0.7041 0.7509 0.7370 0.6910 0.7352 0.7396 0.7049 0.7211  0.7337  0.7842
a=1.0 | 07383 0.7979 0.7765 0.7979 0.7969 0.7773 0.7884 0.7874 0.7762 0.7772  0.7812 0.8084

Fasion- a=5.0 | 08069 0.8195 0.8188 0.8195 0.8199 0.8084 0.8108 0.8108 0.8128 0.8082  0.8202 0.8187

MNIST p=0.3 | 0.7603 0.8222 0.7561 0.8222 0.8200 0.7694 0.7996 0.7977 0.7711 0.7690  0.8129 0.8265
p=0.5 | 07389 0.7805 0.7002 0.7805 0.7744 0.7677 0.7604 0.7508 0.7506 0.7681  0.7862  0.7960
p=0.7 | 0.6851 0.7668 0.6864 0.7668 0.7646 0.7231 0.6915 0.6693 0.7108 0.7231  0.7770  0.7909
p=0.9 | 04963 0.6299 0.5937 0.6586 0.5955 0.5653 0.5786 0.5905 0.5432 0.5962  0.7034 0.7415
a=0.1 | 02156 0.3342 0.2745 0.3945 0.3285 0.2472 0.3193 0.3233 0.2517 0.2323  0.3928 0.4581
a=0.5 | 04624 0.5548 0.5002 0.5409 0.5355 0.5248 0.5566 0.5207 0.5310 0.5247  0.5794 0.6127
a=10 | 05260 0.5753 0.5644 0.5562 0.5553 0.5488 0.5882 0.5623 0.5521 0.5673  0.6100 0.6219

CIFARI0 | &= 5.0 | 0.5534 0.6162 0.5877 0.6299 0.6482 0.5973 0.5841 0.5866 0.5871 0.5969  0.6643 0.6705
p=0.3 | 05078 0.5278 0.5179 0.5347 0.5031 0.5320 0.5119 0.5187 0.5083 0.5190  0.5217 0.5252
p=0.5 | 04614 0.5050 0.4929 0.5060 0.4978 0.4942 0.4805 0.4904 0.5154 0.5029 0.5141 0.5191
p=0.7 | 04004 0.4724 0.3850 0.4767 0.3919 0.4557 0.4504 0.4331 0.4602 0.4554 0.4695 0.5099
p=0.9 | 03753 0.3898 0.3443 0.4135 0.3832 0.4077 0.4138 0.3970 0.4055 0.4077 0.3994 0.4358
a=0.1 | 0.1014 0.1265 0.0704 0.1208 0.1141 0.1281 0.1260 0.1265 0.1151 0.1016  0.1221  0.1675
a=0.5 | 0.1401 0.1711 0.1268 0.1786 0.1676 0.1664 0.1682 0.1735 0.1513 0.1629  0.1678 0.2135
a=1.0 | 0.1846 0.2202 0.1318 0.2357 0.2080 0.2067 0.2177 0.2199 0.2147 0.2073  0.2069 0.2727

CIFAR100| &= 5.0 | 02335 0.2939 0.2101 0.2957 0.2797 0.2593 0.2765 0.2810 0.2731 0.2689  0.2911 0.3416
p=0.3 | 02312 0.3175 0.1904 0.3336 0.2523 0.3011 0.3175 0.3092 0.3299 0.2932  0.3021 0.3718

p=05 | 0.1136 0.1884 0.1016 0.1985 0.1740 0.1779 0.1897 0.1956 0.1979 0.1735  0.1215 0.2480

p=0.7 | 0.0877 0.0818 0.0983 0.1378 0.1065 0.1074 0.1184 0.1229 0.0954 0.0853  0.0634 0.1931

=0.9 | 0.0693 0.0683 0.0906 0.1244 0.1133 0.0877 0.1124 0.1143 0.0807 0.0681  0.0526 0.1616

Table 1: F-score performance (mean) comparison on Dirichlet and Tweak-One shift datasets.

experimental configuration, we employ a two-layer fully con-
nected neural network for the MNIST and Fasion-MNIST
datasets, while concurrently utilizing ResNet-18 [He et al.,
2016] for both the CIFAR-10 and CIFAR-100 datasets. We
sample the data 5 times using the specified shift parameter
and calculate the average as final outputs. To assess the effec-
tiveness of OLSA, we employed accuracy (Acc), F-score, and
mean squared error (MSE) as evaluation metrics, where MSE
is defined as follows:

PY) |
Py(Y)

MSE(d) = (19)

len(w)

Parameter settings. The parameters for compared methods
are chosen based on the technologies delineated in their re-
spective references. In our study, we report the results of
different shift parameters o € [0.1,0.5,1.0,5.0] and p =
[0.3,0.5,0.7,0.9]. In addition, we fix the trade-off parame-
ter 5 = 0.1 empirically, while the calibration parameter -y is
selected from the discrete set [0.8, 0.9, 1, 2] and the regulariza-
tion parameter ) is chosen form the discrete set [0,0.1, 1, 10]
through the validation set results.

4.2 Main Results

To demonstrate the efficacy of our OLSA approach, all meth-
ods run on framework with Python 3.7 and PyTorch based on
the same pre-trained classifier. We present the Acc (shown in
supplementary materials) and F-score (shown in Table 1) on
both the Dirichlet and Tweak-One shift datasets, and have the
following observations.

1. While the performance of different comparative meth-
ods varies across diverse datasets, our OLSA approach
demonstrates a consistent improvement in the perfor-
mance of existing label shift methods in most cases.
For example, on the Dirichlet shift CIFAR10 dataset
with a = 0.1, OLSA exhibits significant improvements,
achieving an increase of nearly 6% in the F-score.

2. When compared to the performance outcomes observed
under conditions of small label shifts, OLSA demon-
strates a more significant enhancement in performance
under scenarios involving large label shifts. For exam-
ple, on the Tweak-One shift Fasion-MNIST dataset with
small shift p = 0.3, OLSA exhibits a decrement of 1%
in the F-score, while under large shift p = 0.9, achieves
a notable increase of approximately 4% in the F-score.
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Figure 3: Performance analysis diagram of OLSA.

These findings underscore the robustness and stability of
OLSA in addressing large label shift scenarios.

3. It is noteworthy that, on the CIFAR100 dataset, OLSA at-
tains a substantial improvement in the F-score, albeit with
less satisfactory results in terms of Acc. This disparity
arises from the significant weight estimation bias exhib-
ited by the compared methods, which results in highly
precise predictions for classes with abundant samples
while overlooking the less represented classes.

4.3 Performance Analyses

MSE comparison

To demonstrate the efficacy of our shift strategy, we intro-
duce MSE indicator, which represents the deviation between
the estimated and true weights. The results are depicted in
Fig. 3 (a-d), from which several key observations have been
derived. (1) The performance of OLSA remains superior to
compared methods in the majority of cases, especially in cases
where the degree of shift is significant. This fully demon-
strates the stability of our method, indicating its applicability
to most shift scenarios. (2) We observe that accurate weights
do not necessarily lead to a better classifier among the com-
parative methods. However, such a scenario rarely occurs
in our approach. This indirectly demonstrates the effective-
ness of OLSA, which simultaneously trains the classifier and
estimates the importance weight.

Parameter sensitivity analysis

Here, we check the Acc of the trade-off parameters A\ and
on the Tweak-One shift MNIST and Dirichlet shift Fasion-
MNIST datasets respectively. The results are visually pre-
sented in Fig. 3 (e-f). We find that for different datasets and

shift scenarios, the optimal value of ~ varies, which under-
scores the necessity of adjusting it, showcasing the effective-
ness of the calibration loss. Furthermore, when the value of
A is large, the model’s performance typically remains good,
which illustrates the effectiveness of introducing the lower-
level regularization term.

Visualization of label distribution bias

In order to demonstrate that OLSA approach can alleviate
label shift, we present some visualization results in Figure
3 (g-h), which shows the label shift degree Pt(Y) — P(Y) of
the Wout-W and OLSA methods. A smaller degree of label
shift indicates a more accurate estimation of the target label
distribution. As can be observed from figures, OLSA approach
demonstrates robust performance, even under conditions of
significant label shift, with a deviation from the true label
distribution remaining within 0.05.

5 Conclusion

In this paper, we introduce an innovative one-step method-
ology to address the label shift problem, which is crucial
but rarely studied. Utilizing bilevel optimization techniques,
OLSA strengthens the interplay between weight estimation
and classifier training. Dependent on the introduced regular-
ization terms, OLSA approach opens up an interesting frontier
for the robust one-step modeling of scenarios involving large
label shifts. The solid theoretical analysis and enriched ex-
perimental analysis fully demonstrate the effectiveness of our
OLSA approach. In future work, attempts can be made to
enhance the robustness of weight estimation by refining the
regularization term. This may be achieved by leveraging data
structures, among other approaches.
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