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and Bioinspired Scheme

Xueyao Ji1 , Gang Wang1,2 and Yizheng Wang1

1Brain Research Center, Beijing Institute of Basic Medical Sciences, Beijing, China
2Chinese Institute for Brain Research (CIBR), Beijing, China

g wang@foxmail.com

Abstract
Optical flow is pivotal in video-based tasks, yet
existing methods mostly focus on medium-/large-
size objects, while underperforming when char-
acterizing the motion of tiny objects. To bridge
this gap, we introduce the On-off Time-delay with
Hassenstein-Reichardt correlator (OTHR), a com-
putationally efficient scheme inspired by the pri-
mate visual cortex’s direction selectivity mech-
anism. OTHR kernels, applied across multi-
ple frames, discern bright/dark luminance changes
along a specific direction over a time delay, ef-
fectively estimating motion of tiny objects amidst
noise and static backgrounds. Notably, OTHR
integrates seamlessly with leading deep learning
flow estimation models such as RAFT and Flow-
Former. We also propose refined evaluation met-
rics for tiny objects and contribute a new dataset
featuring such objects to aid algorithm develop-
ment. Our experiments confirm OTHR’s superior-
ity over competing methods, particularly in enhanc-
ing state-of-the-art models’ performance on tiny
object motion estimation at minimal cost. Specif-
ically, for objects less than 100 pixels, OTHR re-
duces RAFT and FlowFormer’s errors by 22.03%
and 83.50%, respectively. The codes will be acces-
sible at https://github.com/JaneEliot/OTHR.

1 Introduction
Physiologically, optical flow is interpreted as the motion fea-
tures formed in the retina caused by moving objects [Gibson,
1951]. For animals, accurate optical flow estimation is critical
when perceiving environments and evading predators. Also,
with favorable applications such as object tracking and seg-
mentation, optical flow estimation has been intensively stud-
ied over the past decades.

Horn and Schunck [1981] laid the foundation by propos-
ing two classical constraints: constant brightness and smooth
motion, thereby mathematically formulating optical flow es-
timation as an optimization problem that minimizes the sum
of errors. In recent years, with the advancement of math-
ematical tools and deep networks, the performance of op-
tical flow methods on large-scale datasets has been greatly

Figure 1. The challenge of tiny object optical flow estimation. The
representative optical flow estimation methods underperform seri-
ously when characterizing tiny objects.

improved. For example, FlowNet [Dosovitskiy et al., 2015;
Ilg et al., 2016] and RAFT [Teed and Deng, 2020] have ob-
tained favorable results on popular datasets.

Despite the progress outlined above, estimating the motion
of tiny objects remains challenging for several reasons. First,
tiny objects usually occupy less than 100 pixels and have
indistinct edges. Second, they typically have weak textures
and may appear as small blobs, blending into complex back-
grounds. Third, some models, particularly during sampling
and pooling operations, can easily overlook tiny objects. As
illustrated in Figure 1, the two deep methods seriously under-
perform when characterizing the motion of tiny objects.

Intuitively, human visual systems can effortlessly detect
flying insects passing through their visual fields; camouflage-
covered animals are more likely to be noticed once they
move. These examples demonstrate that moving objects are
easier to detect [Franconeri and Simons, 2003], even if they
are visually non-salient. Motion information facilitates vi-
sual recognition [Wexler et al., 2001]. In the primary visual
cortex (V1) of the primate visual system, the direction se-
lectivity (DS) mechanism contributes to motion perception.
Inspired by the functional properties of the DS, we design a
multi-frame motion extraction scheme that integrates the dy-
namic responses of the On-off cell pathways, the intensity
differences among Time-delayed frames, and the renowned
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Hassenstein-Reichardt correlator [1956], namely the OTHR
method. Instead of estimating the motion direction by solving
equations, the OTHR determines local motion through par-
allel filtering. In addition, the OTHR employs multi-frame
spatiotemporal features, thus effectively suppressing the in-
terference of luminance variation and random noise.

The OTHR method mainly simulates the early stage (V1)
of biological visual pathways, generating fine-grained sparse
motion features with limited receptive fields. However, the
mechanisms by which higher-level brain areas obtain detailed
motion information remain biologically unclear. To address
this issue, we integrate the OTHR with deep models such as
RAFT to produce dense optical flow, utilizing OTHR as a
cheap plug-and-play module and leveraging deep models to
simulate higher-level brain functions. We then build a dataset
featuring tiny objects to facilitate algorithm studies and per-
formance evaluation. Using this customized dataset, we com-
pare the OTHR-based methods with competing approaches.
The main contributions of this work are as follows:

1) To address the limitations of existing optical flow
methods in characterizing tiny objects, we propose a
lightweight and non-learning OTHR method inspired by
the biological DS mechanism, which can effectively de-
termine motion using multi-frame cues.

2) To facilitate a reliable quantitative evaluation of tiny ob-
ject optical flow estimation among various methods, we
revise the original unitary evaluation metric EPE by dis-
tinguishing EPEobj, EPEbg, and EPElocal. In addition, we
build a dataset named FlyingTO, featuring flying tiny
objects against various real-world backgrounds.

3) To improve the popular deep optical flow methods when
characterizing tiny objects, we propose a scheme to in-
tegrate the OTHR into deep methods, e.g. RAFT and
FlowFormer. To address the imbalance in estimation er-
rors between tiny object areas and background areas in
the traditional loss function, we propose to calculate the
loss as a weighted sum of the lossobj and the lossbg. The
experimental results confirm the efficacy and superiority
of our methods.

2 Related Work
2.1 Non-dense Optical Flow
Sparse methods. The LK algorithm [Lucas and Kanade,
1981] is the most classic sparse optical flow method, requir-
ing the motion of all pixels in a window to be consistent to
solve the optical flow equations by associating multiple pix-
els. Its improved version [Bouguet, 2001] introduced a pyra-
mid structure to handle large displacements, primarily ad-
dressing large objects.
Bioinspired methods. The motion information extracted
by existing bioinspired motion detectors lies between sparse
and dense optical flow, usually originating from high-
frequency regions of images, such as edges. One of the
most classic methods is the Hassenstein-Reichardt (HR)
model [1956]. As shown in Fig. 2a, if an object moves from
neuron A to neuron B, then both A and B will be activated
and successively send signals to neuron M. Due to the delay

(a) HR (b) HR correlator (c) BL (d) T4

Figure 2. Bioinspired methods.

module set between A and M, the signals sent by A and B
will reach M simultaneously, then the multiplicative module
in M will produce the enhanced response. This direction of
motion in which the DS neuron M can produce the maximum
response is defined as its preferred direction. In contrast, if
an object moves in the null direction (i.e., B to A), the total
response at M is 0. The HR model has been validated in many
physiological experiments of flies [Borst and Euler, 2011;
Borst and Helmstaedter, 2015], and neurons with discharge
patterns like the HR model have also been found in amphib-
ians, rodents, and primates [Borst and Egelhaaf, 1989].

Figure 2c presents the Barlow-Levick (BL) model [1965].
The delay module is between B and M. The NAND module in
M will suppress the motion response if an object moves in the
null direction. In short, the HR model enhances the response
of motion along the preferred direction, while the BL model
suppresses the response of motion along the null direction.

Subsequent bioinspired methods are mostly based on the
ideas of HR and BL models, such as the HRC in Fig. 2b, and
the T4 model in Fig. 2d inspired by the fly [Haag et al., 2016].

2.2 Dense Optical Flow
Classical methods. Dense optical flow is valuable for video
segmentation, tracking, etc. Most early proposed dense op-
tical flow methods rely on the two classic constraints, e.g.
FarnebackFlow [Farnebäck, 2003], which approximated the
neighborhood of each pixel with a polynomial. Some meth-
ods treated dense optical flow estimation as an energy mini-
mization problem, e.g. the HS method [1981] mentioned in
Sec. 1, and its improved version, TVL1Flow [Pérez et al.,
2013], which replaced the L2 norm in the HS energy func-
tional with the L1 norm to enhance robustness against noise.
SimpleFlow [Tao et al., 2012] obtained an energy functional
based on the probabilistic representation of the motion of
each pixel. DeepFlow [Weinzaepfel et al., 2013] constructed
an energy functional using the weighted sum of a data term, a
smoothness term, and a matching term. The main weakness
of these classic constraint-based methods is their reliance on
the slowly changing displacement field.

Obtaining sparse matching first and then interpolating, or
using a multiscale structure to obtain dense flow, are also
common approaches in classical methods, such as the Simple-
Flow mentioned before, PCAFlow [Wulff and Black, 2015],
EpicFlow [Revaud et al., 2015], DISFlow [Kroeger et al.,
2016], and RLOF [Senst et al., 2012; Geistert et al., 2016].
Matching approaches rely on significant image features that
tiny objects typically lack, while interpolation operations may
result in the loss of tiny objects.
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Deep methods. Combining end-to-end CNN to obtain
dense optical flow can be traced back to FlowNet [Doso-
vitskiy et al., 2015], which fed two adjacent frames into
CNN to obtain feature maps and utilized transposed con-
volution and correlation calculation to obtain optical flow.
Many then-new methods introduced pyramid structures, such
as SpyNet [Ranjan and Black, 2016] and PWCNet [Sun et al.,
2018]. This structure is effective in large displacement cases,
while it does not have significant advantages for tiny object
optical flow estimation. Methods at this stage are still striving
to balance the accuracy, calculation speed, model complexity,
labeled-data dependence, etc.

RAFT [Teed and Deng, 2020] is a representative deep
learning-based method. Based on the features extracted by
its encoders, it constructed 4D correlation volumes to com-
pute visual similarity and recurrently updated the estimated
flow through the GRU. AnyFlow [Jung et al., 2023] used
an implicit neural representation for optical flow estimation
and captured small objects in low-resolution inputs. Some
methods [Huang et al., 2022; Lu et al., 2023] introduced
the attention mechanism into optical flow estimation. Vide-
oFlow [Shi et al., 2023] utilized multiple adjacent frames to
estimate optical flow, but with considerable computational
cost. Another multiframe method, SplatFlow [Wang et al.,
2024], was designed to handle the occlusion problem. Ac-
cFlow [Wu et al., 2023] designed a deformable module to
recursively backward accumulate local flows, solving the
problems of long-range flow estimation. DIFT [Garrepalli
et al., 2023] extended an efficient correlation lookup ap-
proach from RAFT based on varying cost-volume resolu-
tion. MemFlow [Dong and Fu, 2024] embedded a mem-
ory module in a RAFT-like framework. Self-supervised
or unsupervised optical flow methods [Huang et al., 2023;
Yuan et al., 2024] are also a cutting-edge development trend.
Among numerous recent studies, the attention paid to tiny
objects is insufficient. Although some methods have begun
to pursue improvements in optical flow estimation at the fine
edges of objects, there is still a gap when it comes to tiny
objects below 100 pixels.

3 Methodology
3.1 Primary Biological Visual System Model
Shape of the receptive field. In short, the retina is com-
posed of three layers of cells, which are receptor cells, bipo-
lar cells (BC) and ganglion cells (GC) [Shou, 2010]. Among
them, the receptive fields of BC and GC both have a form of
concentric circle antagonism (CCA). The CCA receptive field
reflects the vital role of feedback in neural information pro-
cessing, and it is also the neurophysiological basis for shape
perception.

Rodieck [1965] proposed a mathematical model of CCA
receptive fields, which consists of a small strong-excitatory
center and a larger weak-inhibitory periphery. The two com-
ponents both exhibit Gaussian distributions but have opposite
polarities. The Rodieck model is also known as the difference
of Gaussians (DoG) model.

Later studies [Cleland and Levick, 1974; Hammond, 1974;
Levick and Thibos, 1982; Shou, 2010] show that the shape of

the lateral geniculate nucleus (LGN) receptive fields in cats
and monkeys is not circular but elliptical, which may be a crit-
ical step in the formation of DS in the visual cortex [Shou and
Leventhal, 1989]. Leventhal and Schall [1983] believe that
the elongated and oriented dendritic field distribution is the
anatomical basis for the orientation sensitivity of GC. How-
ever, in this work, we still use DoG-style receptive fields to
simplify.

Spatial kernels of the filter. In 2D space, DoG is an
isotropic filter sensitive to contours but not to orientation. To
obtain DS, there should be a displacement between the cen-
ters of its positive and negative Gaussian kernels. The asym-
metric structure makes it an anisotropic filter sensitive to ori-
entation.

The computational model is inspired by the study on
macaque V1 [Chariker et al., 2021; Chariker et al., 2022].
The ON and OFF cells in LGN are simplified as OFF-ON
pairs separated by a distance d, as shown in Fig. 3a. The
OFF-ON pairs respond asymmetrically to motion stimuli in
different directions, thus generating the DS. Specifically, the
preferred direction of an OFF-ON pair is from OFF to ON,
meaning that the pair will have the maximum response when
an object moves in this direction. The receptive fields of both
ON and OFF cells are in the form of DoG:

S(x, y) =
α

πσ2
α

· e−
x2+y2

σ2
α − β

πσ2
β

· e
− x2+y2

σ2
β (1)

where α = 1.0, β = 0.74, σα = 0.0894, σβ = 0.1259 [Zhu et
al., 2009]. Technically, we can flexibly adjust the parame-
ters in applications. However, to align with the physiological
experimental records, we retain the given parameters.

The differences between the two receptive fields are the
opposite polarity and distinct spatial positions. For the OFF-
ON pair in Fig. 3a, taking the midpoint of the line connecting
the centers of two cells as the coordinate origin, the spatial
kernels of OFF and ON cells have the following forms:

Soff = −S(x+
d

2
, y) (2)

Son = S(x− d

2
, y) (3)

Temporal kernels of the filter. Considering the time di-
mension, a filter sensitive to the motion direction should be
anisotropic in 3D. Spatial filtering extracts static characteris-
tics, such as contours and textures, while temporal filtering
detects changes of this spatial information. An essential step
for the OFF-ON pair to become a motion detector is the re-
sponse delay of the ON cell relative to the OFF cell [Zhu et
al., 2009; Reid and Shapley, 2002]:

Toff(t) =
t6

τ70
e−

t
τ0 − t6

τ71
e−

t
τ1 (4)

Ton(t) = aT+
off(t− t0) + bT−

off(t− t0) (5)

where τ0 = 3.66 ms, τ1 = 7.16 ms, and t0 is the time de-
lay, usually taken 9 ∼ 11 ms; T+(t) = max{0, T (t)} and
T−(t) = min{0, T (t)} represent the positive and negative

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Spatial kernels (b) Temporal kernels

Figure 3. The spatial and temporal views of the designed On-off
Time-delay kernel inspired by the primate DS mechanism.

Figure 4. The proposed OTHR model obtains more reasonable and
accurate motion characteristics compared to the OT model.

parts of T (t), respectively. According to Reid and Shap-
ley [2002], the distributions of a and b are shown in Tab. 1.
Figure 3b gives an example with a = 1.7 and b = 0.8.

A spatiotemporal kernel with DS can be obtained by:

KDS = SoffToff + SonTon (6)

However, the anisotropy of such a kernel not only con-
tributes to motion detection but also leads to a problem. ON
cells are sensitive to an increase in brightness, whereas OFF
cells are the opposite. Picture a white square moving to the
right on a gray background, of which the leading and trail-
ing edges give rise to light-on and light-off responses, respec-
tively. The kernel KDS acts inconsistently on these two edges,
which is not the desired result of the direction estimation.
Combination with HR correlator. To solve the above
problem, we propose to combine this On-off Time-delay (OT)
model with the Hassenstein-Reichardt correlator (HRC):

RDS =KA
τ ×KB −KA ×KB

τ

=(SoffTon)× (SonToff)− (SoffToff)× (SonTon)
(7)

where KA and KB represent the spatiotemporal filters of
cells A and B; τ marks a filter with time delay. The struc-
ture of HRC is shown in Fig. 2b. It combines the preferred-
direction enhancement and the null-direction suppression.
Here is a simple explanation of the mechanism of HRC. Use

(a, b) (1.7, 0.8) (1.6, 0.7) (1.1, 0.5) (1.0, 0.4)

Probability 10% 30% 30% 30%

Table 1. Distribution of parameters a and b in the Eq. (5).

value 1 to indicate a positive response. When the HRC per-
ceives a stimulus moving along its preferred direction (that is,
from A to B), its total response is equal to 1 (1 minus 0), and
vice versa is -1 (0 minus 1); when there is no stimulus, its total
response is 0. This On-off Time-delay method that combines
HRC is called OTHR. As shown in Fig. 4, the OTHR obtains
the consistent motion saliency on the light-on and light-off
edges that move in the same direction. To better display, the
areas with optical flow values of 0 are visualized as black. In
Sec. 4, the experimental results will verify the advantages of
the scheme in Fig. 2b over that of Fig. 2d.

3.2 High-level Visual Model
The bioinspired method in Sec. 3.1 mainly simulates the func-
tions of the retina and V1, which belong to the early stage of
the biological visual system. The neuroscience field has con-
firmed that motion information is processed and transmitted
among different levels of the visual system [Dai et al., 2025],
and full semantic motion cognition occurs at the higher level
of the brain areas, such as the medial superior temporal cor-
tex. Consequently, the motion characteristics yielded by the
OTHR are considered low-level and should be further pro-
cessed. How higher-level brain areas perceive motion re-
mains unknown; nevertheless, deep models in CV fields may
be able to functionally simulate this process. In this work, we
employ the widely used deep optical flow models, e.g. RAFT
and FlowFormer, to assist the OTHR yield semantic optical
flow results. Instead of studying all SOTA models, we select
these two representative CNN- or Transformer-based mod-
els mainly because we intend to assess how the deep models
perform in characterizing tiny objects and to explore how the
cheap bioinspired OTHR benefits deep models.

The method of combining our cheap plug-and-play module
with deep models is simple. The primary motion information
extracted by OTHR is concatenated with the input images in
the channel dimension, and the images after channel expan-
sion are fed into deep models to extract full semantic motion
information. The architecture is shown in Fig. 5.

Additionally, we notice that the loss function commonly
used by deep optical flow models equally calculates the es-
timation errors at each pixel, thus tending to focus on large
objects. However, when characterizing tiny objects, the tra-
ditional loss function is far from reasonable. Due to the small
proportion of tiny object areas in the entire image, the fluc-
tuation of estimation errors in these areas is often too slight
to be noticeable. Therefore, such a loss function is less ca-
pable of guiding the model to be optimized correctly. The
improved version distinguishes between background loss and
object loss and then assigns different weights:

Lw =
N∑
i=1

γN−i∥α(f bg
gt − f bg

i ) + β(f obj
gt − f obj

i )∥1 (8)

where N is the number of iterations of the recurrent unit in
deep models; γ < 1, assigning different weights to different
iterations; generally, α < β and α is set to 1 by default. Sub-
sequent experiments show that the improved weighted loss
function effectively reduces the EPE in the estimation of op-
tical flow for tiny objects.
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Figure 5. Illustration of the proposed architecture that combines the deep model with the bioinspired OTHR.

4 Experiments
4.1 Dataset Construction
Given the scarcity of optical flow datasets for tiny objects, we
build FlyingTO, a dataset that contains tiny objects flying ran-
domly against complex backgrounds, as shown in Fig. 6. The
FlyingTO contains 320 videos for training and 100 videos for
testing. The frame resolution is 512×640 Px. Each video
has a duration of 2.4s with a frame rate of 25 FPS. Based
on the clean FlyingTO videos, a noisy version is established
by adding Gaussian noise, salt-pepper noise, and a change of
brightness, which can be used for evaluating the algorithms’
robustness against noise. In FlyingTO, 50% of objects have
sizes less than 100 pixels, while the sizes of the other 50%
range from 100 to 400 pixels. In addition, flying objects
have diverse shapes, including polygons, circles, stars, and
irregular real-world object appearances (e.g., birds, balloons,
drones). The number of objects in each video is randomly se-
lected between 1 and 9. The backgrounds are selected from
the COCO [Lin et al., 2014] and AntiUAV [Jiang et al., 2021]
datasets to simulate real-world scenarios. To demonstrate our
method’s feasibility, a synthetic dataset suffices. Building a
costly real-world dataset is planned for the future.

4.2 Evaluation Metrics
Similarly, we extend the end-point-error (EPE) to EPE,
EPEobj, EPEbg, and EPElocal, following the idea of optimizing
the loss function. The former three represent the overall, ob-
ject, and background EPE, respectively. When calculating the
EPElocal, we determine a dilated bounding box for each tiny
object and subsequently calculate the EPE within all boxes as
the EPElocal. The side length of each dilated bounding box is
approximately 20 ∼ 50 pixels.

(a) Example 1
(clean)

(b) Example 1
(noisy)

(c) Example 2
(clean)

(d) Example 2
(noisy)

Figure 6. Example frames in the FlyingTO dataset. The flying object
sizes in (a) and (b) are less than 100 pixels, while their sizes in (c)
and (d) are between 100 ∼ 400 pixels.

(a) Input (clean) (b) GT

(c) Enlarged GT (d) BL (e) T4 (f) OTHR (ours)

Figure 7. Bioinspired methods vs. OTHR. The gray dashed boxes in
(c) represent the cropped areas corresponding to (b).

4.3 Bioinspired Methods vs. OTHR
As illustrated in the previous section, bioinspired methods
usually perform well at object edges that are perpendicular
to the direction of motion. Therefore, we first compare the
OTHR with the aforementioned BL and T4 models on a video
that contains moving rectangles, as in Fig. 7a. Compared to
BL and T4, the OTHR achieves consistent motion saliency
on the leading and trailing edges, as shown in Fig. 7f, ob-
taining more reasonable results than competing methods. For
the BL model, the difference in contrast between objects and
backgrounds affects its motion extraction. On the right side
of Fig. 7c, there are two rectangles with red optical flow; in
Fig. 7a, one of these two rectangles is lighter than the back-
ground while the other is darker, leading to inconsistent re-
sults of edge motion extraction, as shown in Fig. 7d. In the
result of T4, as shown in Fig. 7e, there are many blurry shad-
ows around the objects, indicating errors in the estimation of
motion near the edges.

4.4 Classical Methods vs. OTHR
We compare the OTHR with some classical optical flow
methods that are widely used. The quantitative and qualita-
tive comparisons obtained on the FlyingTO dataset are shown
in Tab. 2 and Fig. 8, respectively. OTHR is proposed to ex-
tract sparse motion information from edges, while many clas-
sical methods were designed for dense optical flow. There-
fore, it can be anticipated that OTHR underperforms com-
pared to these classical methods in terms of EPEobj. How-
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(a) GT (b) FarnebackFlow (c) PCAFlow (d) DISFlow (e) RLOF (f) OTHR (ours)

Figure 8. Classicial methods vs. OTHR. The first row: the GT and the estimated optical flow results yielded by different methods on the clean
frame 6a; the second row: the results obtained on the noisy frame 6b. Please refer to the digital version for better visualization.

ever, it can be observed in Fig. 8 that some classical methods
show limited performance in estimating the optical flow of
tiny objects. Among the results of the competing methods,
concurrent estimation errors occur in the areas around tiny
objects, especially the PCAFlow, yielding significant optical
flow estimation errors in the background, whereas the OTHR
can accurately characterize the motion. This is also certified
by quantitative comparisons, as the OTHR obtains the small-
est EPElocal among all the methods tested.

4.5 Deep Models vs. Versions with OTHR
This work aims to demonstrate the feasibility of our method
for tiny object flow estimation, not to minimize EPE.
Hence, we choose widely tested representative deep mod-
els, i.e., CNN-based RAFT and Transformer-based Flow-
Former. We revise the two models by integrating the OTHR
into their networks, thus having ROTHR (RAFT+OTHR) and
FOTHR (FlowFormer+OTHR). RAFT, ROTHR, FlowFormer

and FOTHR are pretrained on the FlyingChairs [Dosovitskiy
et al., 2015] and FlyingThings [Mayer et al., 2016] datasets to
obtain baseline performance. Subsequently, the four methods
are finetuned by training on the FlyingTO. To evaluate the
contributions of the weighted loss Lw and OTHR method,
respectively, we perform different groups of ablation exper-
iments. The results are reported in Tab. 2 and are visually
shown in Fig. 9.

Although the original RAFT and FlowFormer can hardly
describe the tiny moving objects, the Lw and OTHR con-
tribute to the performance improvement of these deep models.
The complete combination of Lw, OTHR, and deep models
can achieve the best performance. As shown in Fig. 9, Lw and
OTHR help deep models estimate the optical flow of moving
edges more accurately and reduce estimation errors for tiny
objects. More specifically, from top to bottom of Fig. 9b,
the second (RAFT+Lw) and the third (RAFT+OTHR) results
can both characterize more tiny objects than the first (original

Model
Clean Noise

EPE EPEobj EPEbg EPElocal EPE EPEobj EPEbg EPElocal

FarnebackFlow 0.00224 0.68513 0.00196 0.15667 0.06738 0.70529 0.06711 0.18904
PCAFlow 0.00703 0.71198 0.00674 0.12259 0.26570 0.74971 0.26550 0.23830
DISFlow 0.00182 0.67248 0.00154 0.14482 0.32115 0.68456 0.32100 0.27445

RLOF 0.12162 0.83850 0.12132 0.16236 0.52452 0.89321 0.52437 0.44707
OTHR (ours) 0.00070 0.82754 0.00036 0.06577 0.06821 0.82403 0.06790 0.12099

RAFT△ 0.02533 0.74099 0.02503 0.06982 0.08573 0.76772 0.08545 0.10330
RAFT 0.00020 0.25072 0.00010 0.01836 0.00022 0.27382 0.00011 0.01962

RAFT (β=2) 0.00020 0.23293 0.00011 0.01838 0.00023 0.25013 0.00013 0.01946
ROTHR 0.00017 0.20934 0.00009 0.01584 0.00022 0.26405 0.00011 0.01911

ROTHR (β=2) 0.00017 0.19548 0.00009 0.01573 0.00022 0.24610 0.00012 0.01897
FlowFormer 0.00048 0.77245 0.00016 0.04582 0.00048 0.77245 0.00016 0.04582

FlowFormer (β=2) 0.00012 0.13592 0.00007 0.01142 0.00014 0.14927 0.00009 0.01246
FOTHR 0.00012 0.12936 0.00006 0.01062 0.00013 0.15105 0.00007 0.01207

FOTHR (β=2) 0.00012 0.12742 0.00007 0.01088 0.00014 0.14959 0.00008 0.01241

Table 2. The evaluation results of different methods obtained on the FlyingTO dataset (object size < 100 pixels). The symbol △ indicates
that the method is tested using the officially provided weights without finetuning on our dataset. The best results are marked in bold.
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(a) (b) RAFT- (clean) (c) RAFT- (noisy) (d) FlowFormer- (clean) (e) FlowFormer- (noisy)

Figure 9. The estimated optical flow obtained by two popular deep methods and the versions integrated with the weighted loss Lw or the
OTHR model. The original deep RAFT and FlowFormer have limitations in tackling tiny objects and noise. Benefiting from the Lw and
OTHR, the performance of these two deep methods in characterizing tiny moving objects is improved, even in noisy frames. (a) Inputs and
GT in which the object sizes are less than 100 pixels. (b) ∼ (e): The zoomed-in version of the optical flow results yielded by the RAFT-based
and FlowFormer-based methods on clean and noisy frames. Gray dashed boxes represent the locally zoomed-in cropped areas from the GT.
Areas with optical flow values of 0 are set as white.

RAFT). The bottom one (ROTHR+Lw) can yield the optical
flow of all tiny objects, except for the loss of an extremely
small object in the upper right corner and the inaccurate es-
timation of the optical flow of the leftmost object (there is a
slight difference compared to GT). In Fig. 9c, due to noise
interference, the results are not as good as in Fig. 9b, but our
method performs much better than the original. According
to Fig. 9d and Fig. 9e, we surprisingly find that although the
original FlowFormer fails to estimate the optical flow for tiny
objects, our schemes, including the Lw and OTHR, help the
FlowFormer accurately characterize tiny moving objects.

For the quantitative results in Tab. 2, one may doubt that
the EPE- values of many tested methods are rather low, while
the corresponding visual results are unsatisfactory. This is
plausible for the following reason. Compared with large ob-
jects and their large displacements, tiny objects in FlyingTO
generally have sparse distributions, tiny sizes, and low veloc-
ities. Thus, we might obtain rather small EPE values even
if tiny objects were neglected. We highly suggest evaluating
performance by distinguishing EPEobj, EPElocal, etc.

The results in Tab. 2 reveal that the classical methods and
original deep models struggle to yield accurate optical flow
for tiny objects, as they all result in comparatively larger
EPEobj. With the help of the FlyingTO dataset and the pro-
posed Lw, the performance of RAFT and FlowFormer has
been significantly improved. For example, after finetuning,
the EPEobj (clean) of RAFT decreases by 66.2%. Further-
more, the proposed cheap OTHR method can benefit both the

deep models, reducing EPEobj greatly. More details and ex-
perimental results are reported in the supplementary material.

5 Conclusions
Inspired by the direction selectivity mechanism in primate vi-
sual systems [Chariker et al., 2021; Chariker et al., 2022], we
have designed a robust spatiotemporal OTHR method to char-
acterize motion information for tiny objects. A new dataset
has been built to facilitate the design and evaluation of optical
flow methods for tiny objects. We have revised traditional op-
tical flow evaluation metrics to be more reasonable by jointly
considering object areas and local regions. To obtain seman-
tic dense optical flow, we have designed schemes of charac-
terizing tiny moving objects by combining the cheap bioin-
spired OTHR with the popular deep RAFT and FlowFormer.
We have proposed to use the weighted sum of background
loss and object loss to calculate the final loss. The experi-
mental results have validated the superiority of our proposed
method over competing approaches. In particular, popular
deep methods can improve their performance in characteriz-
ing tiny moving objects with benefits from the cheap OTHR
model, even in noisy frames.

Nevertheless, as aforementioned, our OTHR method func-
tionally simulates the early motion processing stage of pri-
mate visual systems. This bioinspired model is far from the
full motion-processing mechanism of primate brains. We
hope to further develop the framework with the help of neu-
roscience under the NeuroAI paradigm.
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