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Abstract

Image inpainting aims to restore the original im-
age from a damaged version. Recently, a spe-
cial type of diffusion bridge model has achieved
promising performance by directly mapping the
degradation process and restoring corrupted images
through the corresponding reverse process. How-
ever, due to the lack of explicit semantic priors dur-
ing the denoising process, the inpainted results typ-
ically exhibit inferior context-stability and seman-
tic consistency. To this end, this paper proposes
a novel Global Structure-Guided Diffusion Bridge
framework (GSGDiff), which incorporates an addi-
tional structure restorer to stabilize the generation
of holistic semantics. Specifically, to acquire richer
semantic structure priors, this paper proposes a pos-
terior sampling approach that captures semantically
global and consistent structures at each timestep,
efficiently integrating them into the texture gener-
ation through the corresponding guidance module.
Additionally, considering the characteristics of dif-
fusion models with low denoising levels at larger
timesteps, this paper proposes a semantic fusion
schedule to avoid noise interference by reducing
the weight of ineffective guided semantics in the
early stages. By applying the proposed posterior
sampling to the texture denoising process, GSGDiff
can achieve more stable and superior inpainting re-
sults over competitive baselines. Experiments on
Places2, Paris Street View and CelebA-HQ datasets
validate the efficacy of the proposed method.

1 Introduction
Image inpainting refers to reconstructing a high-quality im-
age from an incomplete one, and it has a wide range of ap-
plications in many fields such as image editing [Li et al.,
2021], artifact restoration [Quan et al., 2024], and object
removal. It is an inverse problem with an ill-posed na-
ture. To resolve this challenging issue, conventional algo-
rithms [Criminisi et al., 2004; Komodakis and Tziritas, 2007;

∗Corresponding author.

Barnes et al., 2009] mainly utilize low-level visual assump-
tions to heuristically reconstruct the damaged regions or
search and copy similar image patches from of the un-
damaged source image to fill the target region. However,
due to limited feature representation, these methods typ-
ically struggle to generate accurate semantics within the
hole. To this end, later works [Krizhevsky et al., 2012;
Liu et al., 2021; Liu et al., 2024b; Suvorov et al., 2022;
Zeng et al., 2022; Yu et al., 2018; Ko and Kim, 2023;
Li et al., 2022; Yao et al., 2024; Peng et al., 2023] have at-
tempted to design advanced components to enhance feature
representations or introduce self-attention mechanisms into
GAN-based [Goodfellow et al., 2014] conditional genera-
tive models, achieving better performance. Nonetheless, such
strategies often lead to weak semantics correlation among
various patches within the masked regions. To address this,
some approaches [Nazeri et al., 2019; Dong et al., 2022;
Liu et al., 2022; Wang et al., 2023] explore the utilization
of additional sparse structure priors as a means to strengthen
the correlations between the inpainted and masked regions.
However, due to their limited semantic generation capabili-
ties and heavy reliance on the semantic consistency between
structure priors and texture, these methods inevitably suffer
from meaningless artifacts.

Recently, diffusion models [Ho et al., 2020; Song et al.,
2021] have shown state-of-the-art performance in generative
tasks, exhibiting excellent semantic generation capability and
pattern convergence, thus effectively addressing poor seman-
tic generation in image inpainting [Lugmayr et al., 2022;
Luo et al., 2023; Liu et al., 2024a; Yue et al., 2024; Wang
et al., 2022]. Within these models, a notable development
is the diffusion bridges [Liu et al., 2023; Shi et al., 2024;
Zhou et al., 2024; Han et al., 2025], which skillfully inte-
grate the end-to-end training paradigm of CNN-based mod-
els with the denoising concept of diffusion models, creating
a point-to-point diffusion process between original and dam-
aged images. Among these developments, GOUB [Yue et
al., 2024] proposes applying Doob’s h-transform to the Gen-
eralized Ornstein-Uhlenbeck (GOU) process, achieving su-
periority over other diffusion bridge models. However, due
to the absence of richer contextual semantics in the denois-
ing process, all of the above diffusion-based methods tend to
either exhibit poor semantics consistency or fill the masked
area with inferior context-stability (see Figures 1 (a) and (b)).
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Figure 1: Illustration of the denoised results for existing arts on PSV [Doersch et al., 2012], e.g., GOUB [Yue et al., 2024] (a) fails to generate
consistent semantics between the masked and unmasked regions due to missing structure guidance; equipped with the guidance of sparse
consistent structure, StrDiff [Liu et al., 2024a] (b) tackles the semantic discrepancy with consistent structure guidance but introduces blurring
and artifacts. Our GSGDiff (c) achieves coherent denoised results via auxiliary global and consistent structure guidance.

This, in practice, limits their performance capabilities, espe-
cially in complex degradation scenarios.

In this paper, we are committed to stabilizing the holis-
tic semantics by exploiting additional semantic priors in tex-
ture denoising and propose an intuitive and effective inpaint-
ing architecture named the Global Structure-Guided Diffu-
sion Bridge framework (GSGDiff). Specifically, we employ
a guidance scheme that diffuses from grayscale images to
masked edge maps within the structure denoising network to
produce auxiliary structural information. To obtain global se-
mantic prior over time, we propose a posterior sampling ap-
proach for the generalized ornstein-uhlenbeck bridge model.
This approach enables the structure denoising network to cap-
ture global and consistent semantics at each timestep. More-
over, given the unique characteristics of the diffusion models,
where higher values of timesteps correspond to lower levels
of denoising, the guidance semantics often contain more ir-
relevant noise. To mitigate this issue, we propose a semantic
fusion schedule that reduces the weight of ineffective seman-
tics in the early stages to improve the effectiveness of guided
information. With the assistance of structures in the texture
denoise process, GSGDiff can generate meaningful results.

The main contributions of the paper are as follows:
• This paper proposes a novel Global Structure-Guided

Diffusion Bridge framework that leverages a pre-trained
auxiliary network to acquire structure semantics and ef-
ficiently injects them into texture generation, achieving
superior restoration in texture and structure.

• To obtain time-dependent global semantics guidance,
this paper proposes a posterior sampling approach
tailored to the generalized ornstein-uhlenbeck bridge
model, allowing the structure denoising network to cap-
ture global and consistent semantics at each timestep.

• Considering the lower denoising capability in the initial
stages of denoising, this paper proposes a semantic fu-
sion schedule to improve guided semantics more effec-
tively while reducing the impact of irrelevant noise on
texture generation.

2 Methodology
2.1 Preliminaries: Generalize Ornstein-Uhlenbeck

Bridge for Image inapinting
Given a ground-truth image Igt ∈ R3×H×W and a binary
mask M ∈ R1×H×W that indicates the region to be in-
painted, the goal of image inpainting is to reconstruct the
masked image Im = Igt ⊙ M into a fully inpainted image.
Typical diffusion bridge models for inpainting consist of two
main processes: the forward texture diffusion process and the
reverse texture denoising process.

For the forward diffusion process, given an initial texture
state x0 representing the ground truth image Igt and a final
state xT representing the corresponding masked image Im,
with both ends of the bridge (i.e., x0 and xT ) known, the
diffusion process {xt}Tt=0 for any time t ∈ [0, T ] can be ex-
pressed as:

dxt =

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)dt+ gtdwt,

θ̄t:T =

∫ T

t

θzdz, σ̄2
t:T =

g2T
2θT

(
1− e−2θ̄t:T

)
,

(1)

where θt and gt refer to the drift and diffusion coefficients, re-
spectively. They are positive time-dependent parameters that
satisfy 2λ2 = g2t /θt. λ2 is a given constant scalar and wt
is a standard Brownian motion that introduces randomness to
the differential equation. The stochastic differential equation
(SDE) defined above will necessarily pass through the final
state xT when t = T , creating a bridge connecting the points
x0 and xT , hence this type of model is referred to as a diffu-
sion bridge model. The forward process at any given moment
t can be defined as follows:

p(xt | x0,xT ) = N(m̄′
t, σ̄

′2
t I),

m̄′
t = e−θ̄t σ̄

2
t:T

σ̄2
T

x0 +

[(
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T σ̄2
t

σ̄2
T

]
xT

σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

(2)
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Figure 2: Overview pipeline of proposed GSGDiff, which utilizes a posterior sampling approach in the structure denoising network to generate
semantically global and consistent structure priors. These semantic priors extract feature representations through their respective Semantic
Blocks and then perform feature fusion. In this process, a Semantic Fusion Schedule is used to mitigate the impact of invalid noise within
guidance semantics in the early denoising stages. Subsequently, the guidance information is injected into the texture denoising network
through a Conditional Guidance Module, ultimately yielding consistent and meaningful denoising results.

For the reverse texture denoising process, we can reverse
the diffusion SDE from Eq. (1) to denoise starting from the
final state xT and obtain the restored image x0, this process
can be defined as:

dxt =

[(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

− g2t∇xt
log p(xt | xT )

]
dt+ gtdwt.

(3)

Since the conditional score function is unknown, we can train
a conditional time-dependent neural network by parameteriz-
ing the noise as ϵθ(xt,xT , t) to estimate the score. Thus, the
ultimate training objective can be expressed as:

L = Et,x0,xt,xT

[
1

2g2t

∥∥∥∥∥ 1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a

+(σ̄′2
t − σ̄′2

t−1a
2)m̄′

t

]
− xt

+

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt) +

g2t
σ̄′
t

ϵθ(xt,xT , t)

∥∥∥∥∥
]
,

(4)
where a and b is positive weight and the conditional
score ∇xt log p(xt | xT ) ≈ ∇xt log pθ(xt | xT ) =
−ϵθ(xt,xT , t)/σ̄

′
t. Therefore, starting from masked image

xT , we can recover x0 by utilizing Eq. (3) to perform reverse
iteration.

2.2 How to obtain Time-dependent Global
Semantics for Texture Denoising?

Recent work [Liu et al., 2024a] indicates that progressively
incorporating the semantically sparse structure into texture
generation over time can encourage consistent semantics in
the inpainted regions. However, in more complex degradation
scenarios, merely relying on consistent semantics established
at an early stage often fails to align the generated content with
the global semantics well.

As shown in Figure 1, both GOUB [Yue et al., 2024] (a),
which lacks additional semantic prior, and StrDiff [Liu et
al., 2024a] (b), which relies on consistency-based semantics
structure guidance, fail to achieve optimal inpainted result.
To this end, an intuitive idea is to introduce global seman-
tics, building upon the consistent sparse structure guidance
provided in the early stage.

To achieve this, this paper proposes a posterior sampling
approach for GOUB to generate richer global semantic prior
from the posterior distribution p (xt−1 | xt,xT ) conditioned
on x0. Specifically, given an initial state x0 and a finite ran-
dom diffusion state xt at time t ∈ [0, T ], we can prove that the
posterior of GOUB is tractable, and this posterior distribution
is given by:

p(xt−1 | x0,xt,xT ) = N (xt−1 | µ̃t(xt, x0,xT ), β̃tI).
(5)

From Bayes’ formula, we can infer that:

p (xt−1 | x0,xt,xT ) =
p(xt | x0,xt−1,xT )p(xt−1 | x0,xT )

p(xt | x0,xT )

=
p(xt | xt−1,xT )p(xt−1 | x0,xT )

p(xt | x0,xT )
.

(6)
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(a) The different timesteps for the texture

T=100 T=80 T=60 T=40 T=20 T=1 T=100 T=80 T=60 T=40 T=20 T=1

(b) The different timesteps for the auxiliary
 consistent structure

T=100 T=80 T=60 T=40 T=20 T=1

(c) The different timesteps for the auxiliary 
global structure

T=99 T=98 T=96 T=94 T=92 T=90

(d) The earilier timesteps for the auxiliary
 global structure

Semantic
Discrepancy

Figure 3: Illustration of the dense texture and auxiliary structures at various timesteps during training. It can be seen that in the early stages
(large timesteps) the global structure (c) contains richer semantics compared to the sparse consistent structure (b). (d) shows a view of the
earlier global structure when t decreases from 100 to 90.

Since p(xt−1 | x0,xT ) and p(xt | x0,xT ) are Gaussian
distributions (2), by employing the reparameterization tech-
nique, we can obtain p(xt | xt−1,xT ) = N(axt−1 +
bxT ,

(
σ̄′2
t − a2σ̄′2

t−1

)
I). Thus, this posterior distribution

with mean and variance is given by:

µ̃t(xt,x0,xT ) =
1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a

+ (σ̄′2
t − σ̄′2

t−1a
2)m̄′

t

] (7)

and β̃t =
σ̄′2
t−1

(
σ̄′2
t − a2σ̄′2

t−1

)
σ̄′2
t

, (8)

where,

a =
e−θ̄t−1:t σ̄2

t:T

σ̄2
t−1:T

,

b =
1

σ̄2
T

{
(1− e−θ̄t)σ̄2

t:T + e−2θ̄t:T σ̄2
t

−
[
(1− e−θ̄t−1)σ̄2

t−1:T + e−2θ̄t−1:T σ̄2
t−1

]
a
}
.

Moreover, thanks to the reparameterization technique (xt =
m̄′

t + σ̄′
t ϵt), we can combine it with the noise prediction net-

work ϵ̃ϕ(xt,xT , t) to estimate the variable x0 at time t:

x̂0 =

[
xt −

((
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T
σ̄2
t

σ̄2
T

)
xT

− σ̄′
tϵθ(xt,xT , t)

]
e
θ̄t

σ̄2
T

σ̄2
t:T ,

(9)

where m̄′
t and σ̄′

t are the forward mean and variance in Eq.
(2). Then we can iteratively sample reverse states by combin-
ing Eq. (9) with Eq. (5) to construct the sampling process.

By applying this sampling strategy to the structure denois-
ing U-Net ϵφ(yt, t), as depicted in Figure 2, we can obtain
the global semantics ŷ0 and the consistent semantics ŷt−1 at
any time t to assist the texture generation.

2.3 Structure-Guided Denoising Process and
Semantic Fusion Schedule

Considering that the semantic discrepancy between the
masked and unmasked regions gradually increases as the
timestep increases (see Figure 3 (a)), our aim is to allevi-
ate this discrepancy in the early denoising through the aid of
structures. This led to the introduction of the following:

How does the Structure Guide the Texture Denoising
Process?
For the choice of guidance approaches, previous works [Liu
et al., 2024a; Dong et al., 2022] used designed feature fu-
sion strategies or modules to incorporate guidance informa-
tion. However, these approaches typically require retrain-
ing the entire model, resulting in both limited flexibility and
high computational costs. To address this, we introduce some
new guidance modules inspired by ControlNet [Zhang et al.,
2023], which guide the model’s generation without modify-
ing the original pre-trained diffusion model, thus fully lever-
aging its capabilities.

Specifically, as illustrated in Figure 2, the global and con-
sistent semantics ŷ0 and ŷt−1 are first encoded by their cor-
responding semantic blocks. These extracted features, com-
bined with features of available regions, serve as inputs to the
Conditional Guidance Module (CGM). The CGM is specif-
ically designed to process and integrate the guidance infor-
mation. Its left side aligns with and is initialized from the
downsampling module of the pre-trained texture denoising
U-Net, while its right side comprises zero-initialized convo-
lutional layers. Due to the zero initialization, the initial influ-
ence of the conditional guidance on the denoising process is
zero, which allows the model to maintain stability during the
early stages of training. As the model learns, it gradually in-
corporates the guidance information, enabling it to approach
optimal parameters more stably.

How to avoid noise interference within the obtained
structure priors?
Due to the limited denoising capabilities in the early stages,
the obtained structure semantics usually lack effective infor-
mation. As depicted in Figure 3 (b), as t decreases from

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 4: Illustration of the weight function for consistent and global
features guidance.

100 to 60, the masked regions within the auxiliary consis-
tent structure predominantly contain invalid noise, thus it is
difficult to perform any guidance function. To minimize the
influence of invalid information during training, we propose
a specific Semantic Fusion Schedule for the extracted global
and consistent structure features, aiming to assign appropriate
weights to incorporate them into the fusion process. Specif-
ically, for the weight function of the consistent features, we
desire it to smoothly approximate zero in the early stages and
eventually converge to one. Given the natural properties of
the exponential function, it can be set as follows:

fc(t) = e−at − e−at, (10)

where the parameter a is set to 5 for all experiments. Com-
pared to the sparse consistent structure, the global structure
contains richer semantics (see Figure 3 (b) and (c)). Noisy
and ineffective information primarily appears in the earlier
stages (e.g., when t decreases from 100 to 90), as illustrated
in Figure 3 (d). Therefore, our idea is to initially assign higher
weights to the global features, ensuring robust guidance from
global semantics throughout training. The weight function
for global features is given by:

fg(t) = −t2 + 1. (11)

The function curves of the two weight functions are shown in
Figure 4. Thus, the final fusion strategy is defined as follows:

ŷ = yF + fc(t) ∗ yC + fg(t) ∗ yG. (12)

As a result, each semantic block is updated only when the
guidance features become more distinctive, effectively avoid-
ing the impact of irrelevant information.

2.4 Sampling Strategy for Texture Denoising
Process

Generally, we can utilize the trained network to generate
high-quality images by sampling a state xT and then itera-
tively solving the Eq. (3) with a numerical scheme. How-
ever, recent studies [Zhang et al., 2024; Luo et al., 2024]
have shown that iterative sampling using the posterior sam-
pling method during the reverse process can accelerate the
convergence of the generative process and improve sample
efficiency. Therefore, this paper applies the proposed poste-
rior sampling strategy to texture denoising networks as well,
aiming to achieve more excellent inpainting results. How-
ever, as the denoising proceeds, the correlation between the

semantics generated by the auxiliary structure branch (ŷ0 and
ŷt−1) and the texture (x̂t−1) gradually weakens. Continually
injecting the guidance semantics throughout the entire texture
denoising process may result in color distortion and blurring
in the masked regions [Liu et al., 2024a].

To address this, we adopt a simple yet effective stage-wise
semantic injection strategy, utilizing the stage point α to con-
trol the guided timesteps. Specifically, during the early de-
noising stages (i.e., when t ∈ [T, α]), we leverage sparse
consistent and global structures to generate coherent contents
align well with the overall semantics. In the later stage (i.e.,
when t ∈ (α, 0]), we rely solely on dense textures to generate
meaningful semantic details. By doing so, we avoid seman-
tic discrepancy between the generated textures and structures
in the later stage, ultimately eliminating color distortion and
achieving excellent results.

2.5 Overall Architecture
The pipeline of proposed GSGDiff is illustrated in Figure 2.
Specifically, we first employ a pre-trained structure denoising
U-Net ϵφ(yt, t), which models the transformation from gray
image to masked edge image, to acquire structural semantic
priors at each timestep. Then, these structural priors, com-
bined with the masked image, are encoded by their respective
feature extract blocks. Each block consists of four convolu-
tional layers followed by a zero-initialized convolution layer
and utilizes the SiLU [Elfwing et al., 2018] activation func-
tion. Afterward, the guidance module takes these encoded
features to guide the texture generation. We initialize the tex-
ture denoising network with a pre-trained model and freeze
its parameters, preserving its base denoising capability while
enabling guidance learning and reducing training overhead.

3 Experiments
3.1 Experimental Settings
We validate our method and various baselines on three typ-
ical datasets, including Paris Street View (PSV) [Doersch
et al., 2012], which consists of street photos taken in Paris
and contains 14,900 training images and 100 validation im-
ages; CelebA-HQ [Karras et al., 2018] is a dataset contain-
ing 30,000 high-quality human face images, divided into 28k
training images and 2k validation images; Places2 [Zhou
et al., 2017] is a collection of more than 1.8 million nat-
ural images in multiple scenes. Following previous re-
search, we use PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index) [Wang et al., 2004] to measure
pixel and structural similarity. FID (Fréchet Inception Dis-
tance) [Heusel et al., 2017] and LPIPS (Learned Perceptual
Image Patch Similarity) [Zhang et al., 2018] are used to mea-
sure perceptual disparity and visual effect.

3.2 Comparison with the State of the Arts
To validate GSGDiff’s effectiveness, various typical inpaint-
ing models are compared, including LaMa [Suvorov et al.,
2022] which employs Fourier convolution to enlarge the re-
ceptive field; MAT [Li et al., 2022], CMT [Ko and Kim,
2023] which uses a self-attention mechanism to model the
long-distance dependencies between masked and unmasked
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Places2 0.01%-20% 20%-40% 40%-60%
Method Venue PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓

LaMa [Suvorov et al., 2022] WACV’22 31.7873 0.9576 9.5640 0.0399 25.9291 0.8740 26.0854 0.1060 22.1447 0.7706 55.5161 0.1849

MAT [Li et al., 2022] ECCV’22 30.1129 0.9243 19.5104 0.0790 25.7473 0.8575 32.3014 0.1278 21.9842 0.7571 59.8215 0.2022
CMT [Ko and Kim, 2023] ICCV’23 32.2212 0.9568 9.7308 0.0388 25.7010 0.8706 29.3242 0.1099 22.2333 0.7634 58.9052 0.1959

CTSDG [Guo et al., 2021] ICCV’21 30.8392 0.9520 16.0018 0.0523 24.7299 0.8544 53.6743 0.1492 21.2436 0.7362 102.6408 0.2500
DGTS [Liu et al., 2022] MM’22 32.1521 0.9577 7.6521 0.0338 25.6256 0.8732 26.7281 0.1007 21.2612 0.7552 69.9825 0.2042
ZITS [Dong et al., 2022] CVPR’22 32.0579 0.9575 8.6984 0.0384 26.2415 0.8758 23.5181 0.1026 22.1872 0.7700 50.2054 0.1825

Repaint [Lugmayr et al., 2022] CVPR’22 32.8635 0.9611 7.2329 0.0347 25.2324 0.8781 25.4316 0.1001 20.6880 0.7550 64.4779 0.2053
IR-SDE [Luo et al., 2023] ICML’23 33.3146 0.9632 6.6301 0.0320 25.6727 0.8830 24.0067 0.0915 20.9667 0.7656 59.0665 0.1821
StrDiff [Liu et al., 2024a] CVPR’24 33.3335 0.9625 8.2728 0.0330 26.3314 0.8770 29.0277 0.1050 21.6504 0.7581 64.4334 0.2028
GOUB [Yue et al., 2024] ICML’24 33.5159 0.9637 6.5709 0.0305 25.9980 0.8832 22.9658 0.0906 21.2422 0.7670 56.6660 0.1802

GSGDiff (Ours) - 34.0562 0.9688 5.7582 0.0237 26.6631 0.8946 21.6388 0.0814 22.2646 0.7882 49.5415 0.1669

Paris Street View (PSV) 0.01%-20% 20%-40% 40%-60%
Method Venue PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓

CTSDG [Guo et al., 2021] ICCV’21 32.6122 0.9605 14.4908 0.0496 26.4840 0.8831 39.0581 0.1369 22.3543 0.7812 74.5036 0.2323
DGTS [Liu et al., 2022] MM’22 27.3439 0.8972 37.2752 0.1315 23.5567 0.8295 47.7383 0.1873 20.4743 0.7299 71.8430 0.2666

IR-SDE [Luo et al., 2023] ICML’23 33.2511 0.9586 13.2687 0.0466 26.8808 0.8836 35.3289 0.1216 22.9834 0.7811 64.3514 0.2135
StrDiff [Liu et al., 2024a] CVPR’24 32.9251 0.9552 15.5061 0.0503 26.7581 0.8704 39.6069 0.1389 23.2642 0.7630 76.8962 0.2387
GOUB [Yue et al., 2024] ICML’24 32.8552 0.9582 13.6456 0.0461 26.4787 0.8814 33.4046 0.1231 23.1824 0.7820 66.3349 0.2125

GSGDiff (Ours) - 33.2808 0.9622 12.2068 0.0421 27.0950 0.8913 32.4010 0.1186 23.7311 0.7981 63.8277 0.2082

CelebA-HQ 0.01%-20% 20%-40% 40%-60%
Method Venue PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓

LaMa [Suvorov et al., 2022] WACV’22 36.7654 0.9728 6.5111 0.0322 29.2867 0.9088 15.2416 0.0821 24.6776 0.8340 22.3708 0.1378

DGTS [Liu et al., 2022] MM’22 35.2689 0.9694 4.9180 0.0271 27.8547 0.9032 14.4271 0.0793 22.8301 0.8085 31.7918 0.1651
CMT [Ko and Kim, 2023] ICCV’23 37.2173 0.9753 5.1643 0.0271 29.2500 0.9113 14.3871 0.0779 24.4221 0.8309 22.8132 0.1391

Repaint [Lugmayr et al., 2022] CVPR’22 36.2290 0.9730 5.2734 0.0291 27.8263 0.9035 13.9523 0.0832 22.7000 0.8111 23.7413 0.1524
IR-SDE [Luo et al., 2023] ICML’23 37.4388 0.9753 4.8706 0.0303 28.7787 0.9082 13.1708 0.0804 23.6836 0.8146 22.3751 0.1475
StrDiff [Liu et al., 2024a] CVPR’24 38.2595 0.9737 4.7226 0.0237 29.4721 0.9087 14.5869 0.0789 24.3714 0.8149 25.5039 0.1549
GOUB [Yue et al., 2024] ICML’24 37.4265 0.9755 4.5224 0.0284 28.5941 0.9076 13.7277 0.0796 24.0265 0.8158 21.2560 0.1461

GSGDiff (Ours) - 38.6694 0.9807 3.8291 0.0188 29.1570 0.9181 12.1898 0.0677 24.3745 0.8344 20.0816 0.1305

Table 1: Comparison results on Places2, PSV and CelebA-HQ. The bold and underline indicate the best and the second best respectively.

regions; CTSDG [Guo et al., 2021], DGTS [Liu et al., 2022],
ZITS [Dong et al., 2022] which focuses on using the structure
to assist texture generation; Repaint [Lugmayr et al., 2022]
and IR-SDE [Luo et al., 2023], which benefit from DDPM
but overlook the semantic consistency; StrDiff [Liu et al.,
2024a], which recently exploits consistent structure to assist
texture generation, and GOUB [Yue et al., 2024], which per-
forms well as a diffusion bridge model in inpainting.

Quantitative Results Table 1 shows that GSGDiff
achieves near-optimal performance across all three bench-
mark datasets as masking ratios increase. On the Places2
dataset, we achieve PSNR improvements of 1.6%, 2.6%, and
4.8% for three different masking ratios compared to GOUB.
Additionally, for street-view and natural image scenarios, our
method outperforms StrDiff in all metrics. This superiority is
attributed to StrDiff’s lack of holistic semantics in its denois-
ing process, suggesting that our method is capable of gener-
ating more stable and semantically consistent contexts. For
texture-rich face inpainting, GSGDiff demonstrates superior-
ity over other methods in terms of perceptual performance, as
evidenced by lower FID and LPIPS indices.

Qualitative Results In Figures 5 and 6, some visualiza-
tion results are presented for our method and some repre-
sentative methods. For complex structural degradation, our
method avoids structural inconsistencies and blurring, yield-
ing sharper results. Examples include the wall texture in the
first row of Figure 5 and the second row of Figure 6. In addi-
tion, our method excels in restoring natural scenery, such as
the wheat field and the chair depicted in Figure 5, demonstrat-
ing that our method can obtain more contextually semantic

Input CMT ZITS StrDiff GOUB Ours GT

Figure 5: Qualitative comparison on the Places2 dataset among
CMT [Ko and Kim, 2023], ZITS [Dong et al., 2022], StrDiff [Liu et
al., 2024a], GOUB [Yue et al., 2024], and our model.

restoration results. For face restoration, GSGDiff also shows
excellent texture generation ability, and compared with other
methods, our method generates more natural face features
with more realistic expressions.

3.3 Ablation and analysis
In this section, several ablated methods are conducted to as-
sess the efficacy of the proposed algorithm and its compo-
nents. We also analyze the selection of stage points α in tex-
ture denoising. Experiments use the PSV [Doersch et al.,
2012] dataset with mix mask ratios of 20%-60%, and the
baseline model is obtained by removing the proposed prior
guidance and the semantic fusion schedule from our model.
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Input CTSDG IR-SDE StrDiff GOUB Ours GT

Input LaMa CMT StrDiff GOUB Ours GT

Figure 6: Qualitative comparison on the PSV and CelebA-HQ
datasets among CTSDG [Guo et al., 2021], IR-SDE [Luo et al.,
2023], LaMa [Suvorov et al., 2022], CMT [Ko and Kim, 2023],
StrDiff [Liu et al., 2024a], GOUB [Yue et al., 2024], and our model.

Setup
Semantic Prior Fusion Schedule Mix mask (20%-60%)

ŷt−1 ŷ0 fc(t) fg(t) PSNR↑ SSIM↑ FID↓ LPIPS↓

Baseline 23.8064 0.8057 54.0858 0.1896
A ✓ 24.4789 0.8081 53.2989 0.1865
B ✓ 24.5202 0.8091 53.1829 0.1864
C ✓ ✓ 24.5131 0.8098 52.5058 0.1870
D ✓ ✓ ✓ 24.6488 0.8106 51.6009 0.1857
E ✓ ✓ ✓ 24.6257 0.8104 52.6605 0.1861

F ✓ ✓ fusion w concat 24.6143 0.8091 51.8449 0.1874

Ours ✓ ✓ ✓ ✓ 24.7712 0.8121 51.1518 0.1853

Table 2: Ablation studies. Setup A only uses consistent semantics
ŷt−1, B only uses global semantics ŷ0, C uses both ŷt−1 and ŷ0,
D and E use respective semantic weighting functions, and F refers
to replace the semantic fusion schedule with concatenating these se-
mantic priors for fusion.

Semantic prior guidance Table 2 shows that both seman-
tic priors yield improvements over the baseline model. The
global prior notably enhances the performance, with model B
achieving a gain of 0.7 dB in PSNR over the baseline. No-
tably, by combining consistent and global semantics, model
C exhibits better FID and SSIM, but performs slightly worse
on the other metrics. The reason for this is that the consistent
semantics are too sparse in the early denoising stage and pro-
vide limited effective guidance to the texture denoising net-
work. Hence, the performance improvement of the model C
is not as significant as that of the model B.

Semantic fusion schedule Table 2 shows that both model
D and model E show better performance than model C when
the respective weighting functions are applied to the semantic
priors. At the beginning of the denoising process, the consis-
tent semantics are sparse compared to the global semantics.
Thus, after adjusting the weights to reduce the interference of
invalid noise, the model D exhibits higher performance met-
rics than the model E. Ultimately, our GSGDiff exhibits opti-
mal performance when equipped with a corresponding fusion
schedule for each semantic prior. In contrast, model F, which
utilizes a direct concatenation of semantic priors, is shown to
be inferior to our proposed semantic fusion schedule.

The analysis of sampling strategies in texture denois-
ing To explore the practical performance of the proposed

Figure 7: Comparison with different stage point α in texture denois-
ing.

Methods
Mix Mask (20%-60%)

PSNR↑ SSIM↑ FID↓ LPIPS↓

GSGDiff 24.7712 0.8121 51.1518 0.1853
GSGDiff-posterior 24.8301 0.8230 53.9333 0.1839

Table 3: Comparison with sampling strategies in texture denoising.
’posterior’ means we use the proposed posterior sampling approach
for texture denoising.

posterior sampling in texture denoising, we compare sam-
pling strategies across models. The results, shown in Table 3,
demonstrate that using our posterior sampling during infer-
ence significantly improves the model’s performance, yield-
ing better PSNR, SSIM, and LPIPS metrics.

The choices for stage point α In Figure 7, we set α to
take values at [0.2T, 0.4T, 0.6T, 0.8T] to evaluate its effect
on the final inpainted results. From the figure, it can be seen
that the values of distortion metrics (PSNR and SSIM) tend
to increase as the value of α decreases. Notably, the FID and
LPIPS metrics show a significant advantage at α = 0.6T ;
however, as the guided timestep is prolonged, the perceptual
performance (FID and LPIPS) deteriorates. This is due to the
correlation between the semantics generated by the auxiliary
structure branch and the texture gradually weakens. Contin-
ually injecting the guidance semantics throughout the entire
texture denoising process may result in color distortion and
blurring. Considering the limitations of the traditional met-
rics (i.e., PSNR, SSIM) which tend to assign higher values
to smoothed results and do not reflect human perception well
[Zhang et al., 2018], we finally choose α = 0.6T , as the stage
point for phased injection of guidance information.

4 Conclusion

We propose a novel diffusion bridge for inpainting, which
aims to stabilize the inpainted result by integrating time-
dependent holistic semantics in texture denoising. A posterior
sampling approach is tailored to the Generalized Ornstein-
Uhlenbeck bridge, which acquires semantically global and
consistent structure priors. Considering the limited guid-
ance caused by noise in the early denoising, a semantic fu-
sion schedule is designed to reduce the weight of ineffective
guided semantics. Experimental results demonstrate that our
method achieves superior performance compared to previous
methods.
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