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Abstract

Fault Diagnosis (FD) in time-varying data presents
considerations such as limited training data, intra-
and inter-dimensional correlations, and constraints
of training time. In response, this paper intro-
duces FD in the Reservoir-Embedded-Directional
Network (REDNet) model space. Model-oriented
methods utilize well-fitted networks or functions,
denoted as “models” that capture data’s changing
information, as more stable and parsimonious rep-
resentations of the data. Our approach employs
REDNet for data fitting, wherein multiple reser-
voirs are organized along intrinsic correlation di-
rections to establish intra- and inter-dimensional
dependencies, thereby capturing multi-directional
dynamics in high-dimensional data. Represent-
ing each data instance with an independently fitted
REDNet model maps these instances into a class-
separable REDNet model space, where FD could
be performed on the models rather than the orig-
inal data. Concentrating on the data-intrinsic dy-
namics, our method achieves rapid training speeds,
and maintains robust performance even with mini-
mal training data. Experiments on several datasets
demonstrate its effectiveness.

1 Introduction
The development of sensors and data monitoring capabili-
ties has facilitated the collection of sequential data in multi-
dimensional formats, where each point includes multiple ob-
servations or variables, simultaneously capturing various as-
pects of a system or process. Fault Diagnosis (FD) from such
data plays an increasingly important role in various fields.
Typically, the FD process could be examined through two
stages: 1) Fault detection, to ascertain the occurrence of a
fault; and 2) Fault isolation, to identify the specific fault type.
In practice, FD is often streamlined to determine whether a
data instance represents a fault and, if so, identify its type.

Considerable efforts have been devoted to various types of
FD tasks. A straightforward approach involves comparing

∗Corresponding author: Huanhuan Chen.

newly collected data instances with the predictions of the un-
derlying mathematical model that is constructed based on the
“normal” system or data. However, the accuracy and avail-
ability of such underlying mathematical models in real-world
data scenarios are questionable. Addressing this, researchers
have explored the use of Machine Learning (ML) algorithms,
such as the Bayesian classifier [Glowacz et al., 2021] and
Support Vector Machine (SVM) [Shi and Zhang, 2020], ac-
companied by manual feature selections and advanced data
or signal processing techniques. Additionally, Deep Learn-
ing (DL) methods, primarily based on Deep Neural Networks
[Zhao et al., 2017; Shao et al., 2019], have been applied to
FD tasks, due to their automated feature extraction abilities
when dealing with complex data or systems. Yet, behind the
effective usage of most DL methods, there exist two neces-
sary assumptions: 1) Sufficient and diverse labeled data with
consistent distributions between training and test sets; 2) Use
of gradient-descent-based methods for training, demanding
significant training time and computing resources.

In practical FD tasks, the following considerations should
be noted: 1) Faults involve unknowns, such as abrupt changes
or distributions, necessitating FD methods to work with lim-
ited training data; 2) Underlying environments are variable,
even for similar tasks, making it challenging to ensure the
effectiveness of an FD method trained for one environment
in others; 3) Timeliness requirements demand a prompt FD
launch upon data collection in a specific task.

In response to the above considerations, the concept of
model-oriented learning has been introduced for real-time
or on-site classification and diagnosis tasks. The core of
model-oriented methods involves representing original data
instances with functions or networks, often denoted as “mod-
els”, which encapsulate the dynamics (i.e., the changing in-
formation) within the data. Consequently, classification al-
gorithms could be applied to the models, usually the key
parameters of the data-representing function or network, in-
stead of the original data. Notably, this approach places a
heightened emphasis on the data-intrinsic changing informa-
tion, and often demands less training data and duration com-
pared to DL techniques, especially coupled with an appropri-
ate data-fitting approach for adequate dynamic encapsulation.

Nevertheless, for time-series data, existing model-oriented
FD research typically utilizes the Echo State Network (ESN)-
based approaches [Jaeger, 2001] for data fitting and repre-
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Classification on the 
fitted REDNet models 

for Fault Diagnosis 

The Collected Data Instances in 
the Data Space (the data is 

correlated in X and Y directions)

X

Y

Fitting each data instance with Reservoir-
Embedded-Directional Network (REDNet)

Figure 1: Data instances undergo fitting by REDNet to comprehensively capture multi-directional dynamics (using 2-directional correlated
data as an illustrative example). Representing each data instance with the fitted model, coupled with the proposed distance measurement
between models, FD is then efficiently applied to the models within the REDNet model space, rather than on the original data.

sentation, which fits the data along the data-collection order.
In the case of complex systems and data, effective dynamics
within the data may not be limited to any single direction. For
example, when diagnosing mechanical or industrial faults,
significant correlations exist both along the data-collection
order (timeline) and synchronous measurements from vari-
ous sensors (cross-dimensional). Relying solely on ESN for
data fitting risks neglecting these multi-directional dynamics.
Moreover, applying ESN to multi-dimensional data, or inte-
grating multiple ESNs each fitted along different directions
[Zhou et al., 2023], results in overly larger-size fitted models.
This increase in model size and complexity poses challenges
for subsequent model-oriented processing.

To address the above challenges of FD in high-dimensional
time-series data, this paper introduces FD in the Reservoir-
Embedded-Directional Network (REDNet) model space, as
showcased in Figure 1. REDNet1 denotes a reservoir comput-
ing network that incorporates multiple reservoirs in its hidden
layer, each aligned with a distinct intrinsic correlation direc-
tion, ensuring a one-to-one correspondence between a reser-
voir and data-inherent directional dependencies. By estab-
lishing intricate connections between data points in multiple
directions (within and among data dimensions), fitting data
with REDNet accurately and comprehensively captures the
data-inherent multi-directional dynamics. Since normal data
instances share similar dynamic patterns, their corresponding
fitted models tend to be alike. In contrast, fault data, charac-
terized by distinct dynamic behaviors, yield fitted models that
differ markedly from those of normal instances and from each
other. Consequently, representing each data instance with an
individually fitted model maps the original data instances into
a class-separable REDNet model space. This data-to-model
mapping enables efficient classification of these dynamic-
captured models, thereby identifying each corresponding in-
stance as either normal or indicative of a specific fault type.

The main contributions of this paper are as follows:
• REDNet adequately captures multi-directional changing

information within the data. Representing data instances
1In this study, “REDNet” refers to the network architecture em-

ployed for data fitting, whose output serves as a data representation
model, hereafter referred to as the “REDNet fitted model”, or simply
as the “REDNet model” or “fitted model”.

with the fitted models maps the original data instances
into a class-separable REDNet model space, and allows
for further processing on these data-representing models
rather than the original data.

• Fitting each instance via REDNet is independent, ac-
complished by only easily solvable regression, and re-
quires no offline iterative training, subsequently comple-
mented by mature distance-based learning algorithms on
the models. These substantially reduce training time and
computing resource requirements.

• Our approach concentrates on the data-intrinsic dynam-
ics, allowing efficient FD with minimal training data.
Experimental results on various datasets demonstrate its
effectiveness and practicality, especially in data-scarce
scenarios with only limited labeled samples.

2 Related Works
2.1 ML and DL approaches for FD
ML approaches typically combine prior manual feature se-
lection and extraction for specific FD tasks. For instance,
frequency analysis FD mainly adopts Fourier transform, and
time-frequency-based FD utilizes wavelet basis expansion
[Chen et al., 2020]. Bayesian classifier [Glowacz et al., 2021]
and Support Vector Machine (SVM) [Shi and Zhang, 2020]
could be combined with advanced feature extraction tech-
niques. The use of these methods often requires precise prior
knowledge about the data patterns and characteristics, pre-
senting limitations when managing non-stationary data.

Recent advancements in DL methods for FD focus on im-
proving the performance of RNNs, CNNs, and Transformer-
based models. 1) As a variant of RNNs, the Gated Recur-
rent Unit (GRU) [Cho et al., 2014] introduces gating mecha-
nisms to simplify the structure of traditional LSTMs while
capturing long-term dependencies in time series data. 2)
CNN-based methods typically convert time-series data into
image-like formats, applying convolutions and pooling to ex-
tract features. For example, ConvNeXt-V2 [Woo et al., 2023]
introduces a fully convolutional masked autoencoder frame-
work and a Global Response Normalization (GRN) layer
to enhance inter-channel feature competition. 3) The atten-
tion mechanism addresses long-term dependency in process-
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ing large-scale time series data. FEDformer [Zhou et al.,
2022] combines Transformer models with seasonal-trend de-
composition, capturing global trends and detailed temporal
structures with linear complexity. Autoformer [Wu et al.,
2021] leverages a decomposition architecture with an Auto-
Correlation mechanism to model long-range dependencies
and periodic patterns. Nevertheless, the use of DL puts for-
ward requirements on the quantity of labeled data, along with
the non-negligible off-line training time and resources.

2.2 Model-oriented Learning
Previous studies about model-oriented learning have used
Auto-Regressive Moving Average [Xiong and Yeung, 2002]
and Hidden Markov Model [Srivastava et al., 2007] to con-
nect neighboring elements in sequences. However, these
models, designed for linear systems, struggle to capture non-
linear changing information. Addressing this, Chen et al.
[2013a] extended model-oriented learning by introducing the
framework of “Learning in the Model Space”, also simpli-
fied as “Model-Space learning”, employed ESN to fit se-
quential data. Results demonstrated that when applied to a
sequence prediction task, ESN exhibits considerable perfor-
mance and efficiency in capturing dynamics along the fitted
direction, capturing the single-directional dynamics into the
fitted models for further classification. Subsequently, ESN-
based model-oriented methods have found application in di-
verse areas, including FD of the Barcelona water network
[Quevedo et al., 2014], classification of concept drift [Chiu
and Minku, 2022], audio speakers [Wu et al., 2022], and var-
ious other types of time-series data [Ma et al., 2020].

The effectiveness of model-oriented methods primarily de-
pends on several factors: 1) First is model fitness, which en-
sures accurate and adequate capture of the dynamics present
in the data; 2) The efficiency of data fitting is also vital to
ensure that the transformation from the data to models is per-
formed in a timely manner; 3) The complexity and size of the
models play a role in determining the feasibility of further
processing on the models.

2.3 Brief Introduction of Echo State Network
ESN, a subset of reservoir computing and recurrent neural
networks, is recognized for its simplicity and efficiency in
processing sequential data [Lukoševičius and Jaeger, 2009].
As illustrated in Figure 2, ESN comprises input, hidden, and
output layers. The hidden layer features a fixed reservoir
made up of randomly connected neurons, which converts his-
torical data into high-dimensional state representations, re-
ferred to as “echo states”, effectively modeling and retaining
complex dynamics within data.

The input value, hidden state, and output value at nth point
(for time-series data, n indicates the time step) are denoted as
x(n), h(n) and y(n), respectively. The iteration and predic-
tion formulas of ESN are defined as:

h(n) = g(Whhh(n− 1) +Whxx(n)), (1)

y(n) = Wyhh(n) + a, (2)

where Whx is the input weight, Whh refers to the fixed,
randomly determined reservoir weights in the hidden layer,

Input Layer Hidden Layer 
(Reservoir) Output Layer

( )nx ( )nh ( )ny

hxW yhW

hhW

Figure 2: In ESN, the input weight Whx and the reservoir Whh

are randomly generated and fixed. During the fitting process, the
data is put into the hidden layer through the input layer in order,
then iterated over in the hidden layer to get the corresponding hidden
state. The ridge regression is utilized to construct a hidden-to-output
mapping, calculating the output weight Wyh.

which describe neuron connections in the reservoir; Wyh

is the output weight; g is the activation function (typically
tanh); and a is the bias. During sequential data fitting, the
input weight and reservoir are randomly generated and fixed.
After computing the hidden states h(n) for each point, the
output layer maps these states to the target sequence, with the
output weight Wyh solved by ridge regression.

Despite efficient fitting of sequential data via ESN, some
limitations worth considering: 1) ESN only captures the data-
inherent dynamics within the fitting direction (often the data-
collection order), while dynamics in other directions are not
considered; 2) The size of the fitted ESN model increases lin-
early with the size of the input/output value, resulting in re-
dundant fitted models when fitting multi-dimensional data, a
non-conducive situation for further processing on the models.

3 Methodology
This section details our approach: 1) Each data instance is
fitted with REDNet to capture its multi-directional dynam-
ics and is then represented by an individual fitted REDNet
model; 2) We adopt a practical distance metric to assess the
differences between fitted models; 3) Representing instances
with fitted models, supported with the distance metric be-
tween models, FD is implemented in REDNet model space.

3.1 Reservoir-Embedded-Directional Network
Similar to ESN (Figure 2), REDNet consists of an input layer,
a hidden layer, and an output layer. But unlike ESN, the hid-
den layer of REDNet is made of K reservoirs with M units
each, aiming to capture dynamics in K directions. Each reser-
voir consists of interconnected neurons, linked by fixed and
randomly established connections. Figure 3 shows the RED-
Net structure for capturing dynamics in 2 directions.

Suppose a K-directional correlated data instance2, a point
is positioned by (n1, n2, ..., nK), where ni ∈ [1, Ni] in-

2In this paper, “K-directional correlated” means that there are
correlations within K directions in the data. “K-directional corre-
lated data” could be abbreviated as “K-directional data”.
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Input
Layer

Hidden
Layer

1 2( , )n nh

1 2( , )n nx

1 2( 1, )n nh 1 2 1( , )n nh

(a) Iteration of the hidden layer

1 2( 1, )n nh
1 2( , 1)n nh

Hidden
Layer

Output
Layer

1 2( , )n ny

(b) Next point prediction

Figure 3: REDNet consists of an input layer, a hidden layer, and
an output layer. (a) The iteration of the hidden layer when captur-
ing 2-directional dynamics by REDNet. The hidden state h(n1, n2)
is generated by taking into account x(n1, n2) of the current point
and the hidden states h(n1 − 1, n2), h(n1, n2 − 1) of the sur-
rounding processed points within both the two directions. (b) The
“next point prediction” of REDNet. The predicted value, i.e. out-
put value y(n1, n2) is estimated from hidden states h(n1 − 1, n2),
h(n1, n2 − 1) of the surrounding processed points.

dicates the coordinate along the ith direction. The input
value, hidden state, and output value at point (n1, n2, ..., nK)
are represented by x(n1, n2, ..., nK), h(n1, n2, ..., nK) and
y(n1, n2, ..., nK), respectively. The iteration formula of
REDNet is defined as:

h(n1, ..., nK) =g(

K∑
i=1

Whhih(n1, n2, ..., ni − 1, ..., nK)

+Whxx(n1, n2, ..., nK)),
(3)

where Whh = [Whh1 ,Whh2 , ...,WhhK ] indicate the fixed,
randomly determined reservoir weights that describe neuron
connections in the reservoir, fulfilling the Echo State Prop-
erty [Jaeger, 2001] with a spectral radius between 0 and 1;
Whx refer to the input weight, randomly assigned fixed val-
ues from -1 to 1; g is the activation function tanh. The initial
hidden state h(0, n2 · · · , nK) = h(n1, 0, · · · , nK) = · · · =
h(n1, n2, · · · , 0) = 0 in each direction.

The hidden-state iteration of REDNet is started from point
(1, 1, ..., 1) to point (N1, N2, ..., NK), with the process ex-
ampled in Figure 4. Each point is correlated with surround-
ing processed points. Specifically, according to Equation (3),
the hidden state of a point is influenced not only by the in-
put value of the current point, but also by the hidden states of
the surrounding processed points within different directions.
This effect persists as the iteration progresses, thereby estab-
lishing a network of connections between each point in the
data and previously processed points in different directions.

After computing the hidden states for all points, as illus-
trated in Figure 3(b), the output layer calculates the output
value y for each point based on the previous hidden states:

y(n1, ..., nK) =
K∑
i=1

Wyhih(n1, n2, ..., ni − 1, ..., nK) + a,

(4)

(1, ) 1( 1, )n −  1( , )n  1( , )N 

(a) Iteration of ESN

1 2( , 1)n n −

1 2( 1, )n n− 1 2( , )n n

1 2( , )N N

(1,1)

(b) Iteration of REDNet

Figure 4: Comparison of iteration on 2-directional data using ESN
and REDNet. In ESN, the iteration proceeds in a singular direction,
treating each column as an item. It starts from the first item (1, ·),
using the hidden state of one to compute the next. REDNet presents
a multi-directional iteration. It starts from (1, 1), followed by (2, 1),
until to (N1, 1). Then the iteration continues from (1, 2) to (N1, 2).
During iteration, each point is correlated with the surrounding pro-
cessed points within multiple dimensions through Equation (3).

where Wyh = [Wyh1 ,Wyh2 , ...,WyhK ] refer to the output
weights of REDNet, and a indicates the bias.

The fitting process is accomplished by a prediction task on
the original instance, that is, approximating y(n1, ..., nK) to
x(n1, ..., nK) to build the connection between the current in-
put value and the hidden states of processed points. Thus, the
output weight Wyh and bias a could be directly estimated
via regression [Chen et al., 2024]. Through the above fit-
ting, the correlation between adjacent data points is modeled
by REDNet’s multi-reservoir architecture and unique iterative
approach. The multi-directional dynamics within the data are
captured and encoded into a compact REDNet model, repre-
sented in the function form as:

f(h) = Wyhh+ a, (5)

where h = [h(n1 − 1, ..., nK); ...;h(n1, ..., nK − 1)] repre-
sents the concatenated hidden states of the processed points,
Wyh = [Wyh1 , · · · ,WyhK ] refer to the output weights, and
a is the bias vector. Figure 3 illustrates the iteration and pre-
diction of REDNet when handling 2-directional data.

In terms of model size and memory usage, when handling
K-directional data, REDNet provides the output weight of
size K ×M , where M refers to the number of units in each
reservoir within the hidden layer. In comparison, suppose
ESN is employed to fit the data along the jth direction, the

size of its output weight is
K∏

i=1,i ̸=j

Ni ×M , where Ni repre-

sents the number of values in the ith direction.
For example, consider a typical 2-directional data instance

of 100 dimensions (synchronous measurements) and 1000
time points (data-collection order), represented as size 100×
1000, where efficient changing information exists both in the
data-collection order and among synchronous measurements.
Using the prediction formula in Equation (4), REDNet’s out-
put weight is 2×M , where M represents the number of units
per reservoir in the hidden layer. In contrast, using ESN to
fit data along the data-collection order results in an output
weight of 100 × M . Therefore, REDNet provides a more
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compact model with significantly reduced memory require-
ments. Additionally, REDNet achieves data fitting solely
through ridge regression, eliminating the need for iterative of-
fline training or optimization and ensuring manageable com-
putation in time-sensitive tasks.

3.2 Distance Metric between Models
Following the data fitting through REDNet, the distance be-
tween the fitted models is defined to measure the difference
between models. Supposing two K-directional data instances
are fitted by REDNet, the two models could be represented
by: {

f1(h) = Wyh
1 h+ a1,

f2(h) = Wyh
2 h+ a2.

(6)

The 2-norm distance [Chen et al., 2013b] between models
f1(h) and f2(h) is adopted in this paper, estimated by:

L2(f1, f2) = (

∫
C

∥f1(h)− f2(h)∥2dh)1/2

= (

∫
C

∥(Wyh
1 −Wyh

2 )h+ (a1 − a2)∥2dh)1/2

= (

∫
C

∥Wyh
12h∥2 + 2aT

12W
yh
12h+ ∥a12∥2dh)1/2,

(7)

where Wyh
12 = Wyh

1 −Wyh
2 , a12 = a1−a2. aT

12 is the trans-
pose of a12. f1 and f2 are the simplified representations of
models f1(h) and f2(h). Since tanh serves as the activation
function g in Equation (3), h ∈ [−1, 1]KM and the integral
range C ∈ [−1, 1]KM .

Note that for any fixed a12 and Wyh
12 , there is∫

C

aT
12W

yh
12hdh = 0 (8)

in the integral range C ∈ [−1, 1]KM , since the integrand is
an odd function. Therefore:

L2(f1, f2) = (

∫
C

∥Wyh
12h∥2 + ∥a12∥2dh)1/2

= (
2KM

3

KM∑
j=1

w2
j + 2KM∥a12∥2)1/2,

(9)

where wj is the (1, j)th element of Wyh
12 .

We then scale of the squared model distance L2
2(f1, f2) by

2−KM , and obtain:

1

3

KM∑
j=1

w2
j+∥a12∥2 =

1

3
∥Wyh

1 −Wyh
2 ∥2+∥a1−a2∥2. (10)

Via Equation (10), the distance between two models is di-
rectly measured, enabling the utilization of distance-based
learning algorithms on these models.

3.3 Fault Diagnosis in REDNet Model Space
Fault Diagnosis (FD) involves classifying unknown data in-
stances as either normal or specific fault types. As illustrated
in Figure 5, our approach consists of two phases, i.e., the
“Training phase” and “Detection phase”.

Training Phase Detecting Phase

A REDNet model 
fitted from a newly 
collected instance

Figure 5: FD involves two phases. Left: Training Phase where each
data instance is fitted using REDNet and classifiers like SVM or
KNN are trained on the fitted models; Right: Detection Phase where
newly collected data instances are fitted to generate models which
are then classified to identify normal or specific fault types. The
“X”s represent fitted models.

Training Phase
Each labeled data instance is fitted using REDNet, obtaining
a corresponding fitted model. This fitted model represents
the original data instance, mapping it into the REDNet model
space. A classifier, such as Support Vector Machine (SVM)
[Cortes and Vapnik, 1995] or K-Nearest Neighbors (KNN)
[Altman, 1992], is then trained on these models, supported
by the distance metric between models.

Detection Phase
Given a newly collected data instance, it is fitted with RED-
Net. The fitted model is then evaluated using the previously
trained classifier to determine whether it is normal or belongs
to a specific fault type, directly corresponding to the type of
the original data instance.

4 Experimental Study
The experiments are conducted with an Intel Xeon E5-2650
v3 CPU and NVIDIA GeForce RTX 3090 GPU, running
MATLAB R2021a and Python 3.8. The default settings of
REDNet include a spectral radius of 0.7 and a reservoir size
of 60. In the REDNet model space, SVM is adopted3 by de-
fault for classification, and other classifiers are subsequently
evaluated.

4.1 The Utilzied Datasets
The experiments employ four well-known FD datasets, in-
cluding CWRU4, SMD5, TBV6 and GFD7. Specifically, to
address scenarios with limited labeled data, we constrain the
training data to just 50 samples per category across all uti-
lized datasets, with the remaining serving for testing.

• Gearbox Fault Diagnosis Dataset (GFD) [Ghanbari
et al., 2023] consists of 4-dimensional vibration signals
collected by SpectraQuest’s Gearbox Fault Diagnostics
Simulator under varying load conditions. It supports bi-
nary classification (healthy and broken tooth) with data

3Implementation from scikit-learn: https://scikit-learn.org.
4https://engineering.case.edu/bearingdatacenter
5https://github.com/NetManAIOps/OmniAnomaly
6https://data.mendeley.com/datasets/fm6xzxnf36/2
7https://www.kaggle.com/datasets/brjapon/

gearbox-fault-diagnosis
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Method GFD TBV SMD CWRU-A CWRU-B CWRU-C CWRU-D CWRU-E

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

GRU 99.3 99.0 99.2 73.0 72.9 72.9 96.7 96.4 96.5 87.9 87.5 87.7 95.1 95.0 95.0 83.8 83.8 83.6 97.6 97.8 97.7 98.7 98.7 98.7
DTL-CWT 98.3 98.2 98.2 63.8 60.3 62.0 95.8 95.7 95.7 97.6 97.6 97.6 98.6 98.7 98.6 98.8 98.7 98.7 98.6 98.7 98.6 97.1 97.0 97.0
TimesNet 94.0 94.1 94.1 58.1 50.3 53.9 95.6 97.5 96.5 73.4 71.6 72.5 74.5 63.3 68.4 78.6 74.5 70.9 86.1 79.3 80.4 87.1 85.5 85.0
Convnext-V2 91.5 91.2 91.4 79.6 79.5 79.5 99.3 99.3 99.3 98.6 98.6 98.6 98.1 98.6 98.3 99.2 99.0 99.1 98.3 98.5 99.4 98.5 99.1 98.8
Swin-Trans 98.6 98.4 98.5 96.0 95.5 95.7 96.6 96.4 96.5 97.2 97.7 97.4 98.9 98.9 98.9 99.4 99.5 99.4 98.8 98.3 98.6 98.8 98.8 98.8
FEDformer 92.5 92.3 92.3 60.2 59.6 59.9 92.6 92.2 92.4 58.8 58.0 58.4 54.2 55.3 54.7 54.0 54.9 54.4 62.1 59.7 60.9 76.2 75.6 75.9
Autoformer 94.1 94.0 94.0 54.0 49.3 51.6 93.8 93.6 93.6 64.5 58.0 61.1 65.9 65.5 65.4 61.7 60.3 61.0 74.2 72.6 73.4 84.6 84.1 84.3

ESN-MS 95.1 94.7 95.9 89.0 91.3 90.1 92.8 93.6 93.2 95.2 95.0 95.1 95.5 95.3 95.4 97.1 96.3 96.7 95.6 93.3 94.4 94.9 94.6 94.7
REDNet (E/d) 96.2 96.0 96.1 90.8 92.8 91.6 95.3 95.2 95.2 96.7 96.5 96.6 96.8 96.6 96.7 98.5 97.6 98.0 96.9 94.5 95.6 96.2 95.8 96.0
Our Approach 99.1 98.9 99.0 99.3 98.8 99.0 99.8 99.7 99.7 98.9 99.2 99.0 99.1 99.1 99.1 99.7 99.7 99.7 98.9 98.8 98.9 99.3 99.4 99.3

Table 1: Comparison of the against baselines in Precision (Pre), Recall (Rec) and F1-Score (F1). % is not shown for brevity.

instances of length 1024, comprising 100 instances for
each load condition.

• Triaxial Bearing Vibration Dataset (TBV) [Kumar
et al., 2022] contains 3-dimensional vibration data col-
lected from an induction motor’s bearing housing under
varying conditions. It supports a 13-class classification
task, including one healthy and 12 faulty states (inner
and outer race defects with six severity levels each). The
dataset consists of instances of length 1024, with 100
instances extracted for each condition.

• Server Machine Dataset (SMD) [Su et al., 2019] con-
tains 38-dimensional sequential data collected from 28
machines over five weeks. It supports binary classifi-
cation, distinguishing between normal and anomalous
states, with instances of length 256. For this study, 1000
instances were extracted from both normal and anoma-
lous scenarios for analysis.

• Case Western Reserve University Bearing Dataset
(CWRU) [Loparo, 2012] comprises vibration signals
from bearings in 2 dimensions, recorded under four dif-
ferent load conditions (sub-datasets A, B, C, and D).
These datasets include 10 classes: one normal class and
nine distinct anomaly classes. Each sub-dataset contains
200 instances per category, with a length of 1024. Addi-
tionally, the combination of A-D is denoted as E.

System operations introduce correlations in the “time direc-
tion”, that is, the order of data collection. Additionally, syn-
chronous measurements from multiple sensors exhibit sys-
tematic correlations. Therefore, it is essential to capture the
dynamics both in the “time” and “sensor” directions (K = 2)
to ensure comprehensive data analysis.

4.2 Baseline Methods
We evaluate our approach against recent baselines, includ-
ing: 1) RNN-based methods process temporal data point
by point, i.e., the Gated Recurrent Units (GRU) [Cho
et al., 2014]; 2) Image-format-based methods that con-
vert time series signals into image-shaped data through
wavelet transformation, including Deep Transfer Learning
with Continuous Wavelet Transform (DTL-CWT) [Shao et
al., 2019], Convnext-V2 (base model) [Woo et al., 2023],
and Swin Transformer (Swin-Trans) [Liu et al., 2021]; 3)

(a) GFD (b) SMD

(c) CWRU-C (d) CWRU-D

Figure 6: REDNet models derived from data instances in some of
the adopted datasets. The t-SNE is used to reduce the models to
2D for visualization. It is clearly observed: 1) marked separation
between normal (blue) and fault models (other colors except blue),
and 2) smaller distances within classes and larger distances between
classes, allowing for effective fault detection and clustering.

Transformer-based methods utilize self-attention mecha-
nisms to handle dependencies in data sequences, including
FEDformer [Zhou et al., 2022], Autoformer [Wu et al., 2021]
and TimesNet [Wu et al., 2023].

4.3 Results and Discussion
The results8 are shown in Table 1. Our method consistently
delivers substantial results across all datasets. REDNet effec-
tively captures and represents the distinct dynamics induced
by fault occurrences, both within the data collection direc-
tion and across synchronous measurements. Consequently,
models derived from fault conditions significantly differ from

8All evaluated methods show a standard deviation of less than
2% across more than five repetitions, indicating stable outcomes.
ESN-MS and REDNet(E/d) are discussed in the Ablation Study.
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(a) GFD dataset (b) SMD dataset

Figure 7: F1 Scores of our approach and baselines given limited
numbers of training instances per type, from 50 to 10.

those of normal data and other fault types, as evident in Fig-
ure 6. While DTL-CWT and Swin-Trans perform well on
the GFD and CWRU datasets, they struggle with more com-
plex dynamics. Our approach, focusing on intrinsic dynam-
ics, requires minimal training data. With only 50 samples
per class, DL methods, particularly those reliant on extensive
neural networks, struggle to converge rapidly and efficiently.
Future experiments will further investigate FD effectiveness
with limited data and compare training durations.

Discussion with Limited Training Data
We selected the GFD and SMD datasets where all base-
lines initially excelled. Figure 7 shows the F1-Scores of our
method and others as training data decreases from 50 to 10
instances per category. Our approach, leveraging inherent
data dynamics, represents data with dynamic-captured fitted
models for classification. Figure 6 demonstrates that consis-
tent conditions produce similar REDNet models, while dif-
ferent fault types lead to significant disparities due to varied
dynamics captured. Remarkably, our method maintains F1-
scores above 90% even when training data is limited to just
10 instances per class. Conversely, the performance of tradi-
tional DL methods, including those using pre-trained models
for transfer learning, deteriorates sharply with reduced data.

Training Times of Evaluated Methods
Rapid training post-data acquisition is essential for practical
FD tasks9. Table 2 details the training times for various meth-
ods. DL approaches, including those using transfer learning,
typically require extended periods for convergence. Image-
based methods, such as Swin-Transformer, incur additional
delays due to the conversion of time-series data into spectro-
grams. In contrast, REDNet employs straightforward ridge
regression for efficient data fitting, bypassing iterative opti-
mization, and utilizes established distance-based classifiers
like SVM for swift model classification.

Ablation Study
Our approach features: 1) Multiple reservoirs in REDNet’s
hidden layer to adequate dynamic capture; and 2) A direct-

9All methods achieve inference within 0.1 seconds per instance,
satisfying the time requirements of most FD tasks, thus the inference
time is not discussed here.

Method GFD TBV SMD
CWRU

A B C D E

GRU 104.9 565.93 11.4 434.4 445.9 440.6 429.2 1771.0
DTL-CWT 246.4 435.5 78.7 98.5 99.5 98.8 98.5 349.0
Convnext-V2 52.5 316.6 53.1 244.6 243.9 243.0 245.0 978.3
Swin-Trans 193.7 578.2 224.5 449.6 450.6 449.1 447.8 1777.2
TimesNet 116.8 417.1 65.6 321.5 331.8 358.9 366.7 420.4
Autoformer 49.4 227.0 29.5 113.3 121.8 122.4 114.5 177.5
FEDformer 224.7 921.8 139.3 580.8 559.0 565.5 568.9 2177.0

Our Approach 1.2 13.6 2.1 9.8 8.4 8.6 8.2 12.5

Table 2: Training times (s) of our approach and baselines

Classifier
KNN Random Forest

Pre Rec F1 Pre Rec F1

GFD 97.5% 98.1% 97.8% 97.1% 97.5% 97.3%
TBV 98.1% 98.5% 98.3% 98.1% 98.1% 98.1%
SMD 99.2% 99.6% 99.4% 98.5% 98.8% 98.6%
CWRU-Avg 98.6% 98.9% 98.9% 98.4% 98.7% 98.4%

Table 3: Performance of classifiers in the REDNet model space.

solvable model distance measurement to evaluate the differ-
ence between REDNet models.

Instead of multi-directional dynamic capture, we use ESN
for single-directional fitting and classifying the fitted ESN
model, denoted as ESN-model-space (ESN-MS). Also, we
replaced our model distance metric with original Euclidean
distance in the subsequent FD process, denoted by REDNet
(E/d). Table 1 indicates that capturing multi-directional dy-
namics is proven to be 5% more effective than relying on
single-directional fitting (ESN-MS). Compared with REDNet
(E/d), using our proposed model distance metric can also im-
prove the classification effect by about 3%, as it more reason-
ably measures the differences between models, with varying
contributions from output weights and bias.

Different Classifiers in the REDNet Model Space
The performance of KNN and Random Forest (RF) within the
REDNet model space is shown in Table 3, using default ex-
perimental settings. According to Table 1, SVM outperforms,
with KNN also yielding better results than RF. As depicted in
Figure 6, models from similar data types cluster closely, en-
hancing category discrimination. Consequently, these three
methods outperform other baseline approaches in Table 1.

5 Conclusion
This paper introduces FD within the REDNet model space,
validated across various datasets. REDNet captures multi-
directional dynamics, mapping data into a class-separable
model space. Our approach independently fits each instance
using ridge regression, significantly reducing training time.
Focusing on data-intrinsic dynamics enables FD with mini-
mal training data. Future work will explore REDNet’s im-
pact on more directional correlated data. For data with more
directional correlations, how to adaptively adjust the strength
of correlations in different directions is also worthy of study.
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