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Underground Diagnosis in 3D GPR Data by Learning in CuCoRes Model Space
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Abstract
Ground Penetrating Radar (GPR) provides detailed
subterranean insights. Nevertheless, underground
diagnosis via GPR is hindered by the fact that train-
ing data typically contain only normal samples,
along with the complexity of GPR data’s wave-
collection characteristics. This paper proposes sub-
surface anomaly detection within the Cubic Corre-
lation Reservoir Network (CuCoRes) model space.
CuCoRes incorporates three reservoirs with spa-
tial correlation adjustment in each direction to ad-
equately and accurately capture multi-directional
dynamics (i.e., changing information) within GPR
data. Fitting GPR data with CuCoRes and repre-
senting data with fitted models, the original GPR
data is mapped into a category-discriminative Cu-
CoRes model space, where anomalies could be ef-
ficiently identified and categorized based on model
dissimilarities. Our approach leverages only lim-
ited normal GPR data, easily accessible, to support
subsequent anomaly detection and categorization,
enhancing its applicability in practical scenarios.
Experiments on real-world data demonstrate its ef-
fectiveness, outperforming state-of-the-art.

1 Introduction
Subsurface conditions could be effectively detected and im-
aged using Ground Penetrating Radar (GPR), a geophysi-
cal technique that transmits high-frequency electromagnetic
(EM) waves and analyzes their reflections [Zhou et al., 2018].
Compared to single-channel systems, multi-channel GPR
provides richer and more detailed underground information
but also produces large and complex three-dimensional (3D)
GPR data1 [Goodman et al., 2013].

Underground diagnosis via GPR typically involves seg-
menting the collected GPR data along the detection direction
and further identifying sections with subterranean diseases
such as cracks, cavities, or looseness, a labor-intensive and
time-consuming process when manually performed. While
image and signal-based algorithms aid in categorizing GPR

∗Corresponding author: Huanhuan Chen.
1“GPR data” in this paper refers to 3D GPR data by default.

data, they struggle with variability in anomaly characteris-
tics such as composition, size, and environment. Advance-
ments in Deep Learning (DL) approaches, particularly Con-
volutional Neural Networks (CNNs), have also been applied
to object and anomaly detection in GPR data [Liang et al.,
2022a; Hou et al., 2024]. Despite their potential, DL methods
face considerations. The limited data availability, particularly
in a targeted detection area, often leads to restricted training
datasets primarily composed of only normal GPR data sam-
ples free from subsurface targets. The variability of under-
ground environments also undermines the generalization of
DL approaches, restricting their adaptability to various or un-
familiar subsurface conditions. These highlight the challenge
of detecting and categorizing subsurface anomalies in unseen
environments using only newly collected normal data.

Given the above considerations, the Learning in the Model
Space (LMS) framework offers a viable alternative [Chen et
al., 2013]. LMS transitions data from data space to model
space by fitting the data with appropriate models that capture
and describe the dynamics (i.e., changing information) within
the data. Consequently, the fitted models serve as more stable
and parsimonious representations of the data, enabling learn-
ing algorithms to be implemented on the fitted models rather
than the original data. Successfully applied to diagnosing
the Barcelona water network [Quevedo et al., 2014] and the
Tennessee Eastman Process [Chen et al., 2014], along with
diverse time-series classification tasks [Gong et al., 2018;
Wu et al., 2022], LMS has proven its efficacy in various tasks
using the Echo State Network (a type of reservoir computing
network) for data fitting and representation. Notably, LMS
focuses on the data-intrinsic dynamics, which allows for re-
duced reliance on training data and diminishes the computa-
tional demands compared to many DL methodologies, partic-
ularly with adequate and accurate dynamic capture.

While efforts have been made to apply LMS in GPR data
processing, considerations remain. LMS typically captures
uni-directional dynamics, designed primarily for sequential
data with contextual relationships. However, GPR data in-
volves both vertical variations and horizontal correlations due
to the continuity of the subsurface medium and EM waves.
Although attempts have been made to adequately capture
multi-directional dynamics in GPR data [Chen et al., 2024;
Zhou et al., 2023], correlations in GPR data vary across spa-
tial orientations due to differences in antenna channel spac-
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Reservoirs

Spacial 
Correlation 
Adjustment

Iteration within three directions

Normal Model Collection

Underground Diagnosis

Segmenting normal GPR data into blocks

Segmenting newly collected GPR data 
into blocks

Fitting each GPR data block using  CuCoRes
Capturing its multi-directional dynamics into the fitted model

Normal models Model Pool

Newly fitted 
models

Anomaly detection in  
model space

Detecting

Data Block

Detecting

Data Block

1 1 1( , , )x y z

1( , , )a b cx y z

1( , , )a b cx y z

1( , , )a b cx y z 

( , , )A B Cx y z

Figure 1: Our approach consists of two stages: “Normal Model Collection” and “Underground Diagnosis”. During Normal Model Collection,
normal GPR data is segmented into same-sized blocks, each fitted by CuCoRes to capture its multi-directional dynamics, with the fitted models
collected into the “Model Pool”. For subsequent Underground Diagnosis, the same segmentation and fitting are applied to newly collected
GPR data, with fitted models compared against the model pool. Anomalies are identified and clustered based on model dissimilarities.

ing, sampling frequencies, and the underground medium’s di-
electric constant, with some directions being more strongly
correlated. This variation requires precise capture and ad-
justment of dynamics within each direction. Despite recent
advances [Zhou et al., 2024] to optimize this process using
accurately labeled multi-type data, acquiring a sufficiently di-
verse training dataset often remains impractical.

In response, this paper proposes learning in the Cubic Cor-
relation Reservoir Network (CuCoRes) model space for un-
derground diagnosis, as depicted in Figure 1. Our approach
only requires limited normal GPR data, commonly available
from the detection area, to support subsequent anomaly de-
tection and categorization. We segment normal GPR data into
data blocks, with each block being fitted by CuCoRes2. Given
GPR data’s vertical continuity along EM waves and horizon-
tal correlations due to subsurface medium consistency, each
point in GPR data is correlated with its surroundings in mul-
tiple directions. Different underground structures manifest
different dynamics in GPR data. The proposed CuCoRes in-
tegrates three reservoirs in its hidden layer, and applies spatial
correlation adjustment in each direction, constructing con-
nections between points within the data across multiple di-
rections, during which it adaptively strengthens the correla-
tion with nearer points while weakening it with those further
away. Fitting the data block with CuCoRes effectively cap-
tures the data-inherent multi-directional dynamics, resulting
in a compact fitted readout model. Representing each block
with the fitted model, coupled with the distance measurement
between models, transitions the original GPR data blocks into
the CuCoRes model space. These models, derived from nor-
mal data blocks, are collected into a “Model Pool”.

For subsurface anomaly detection in subsequent GPR data,

2In this paper, “CuCoRes” designates the network used for data
fitting, resulting in the “CuCoRes fitted readout model” for data rep-
resentation, also simplified as “CuCoRes model” or “fitted model”.

we continue with the same segmentation process and fit each
data block with CuCoRes, deriving the fitted model for each
block. Given the consistent dynamics within GPR data,
blocks originating from identical subsurface structures derive
similar CuCoRes models, whereas models fitted from diverse
subsurface structures manifest significant variations, depict-
ing the unique dynamics captured. Each newly fitted model is
then evaluated against the established model pool, obtaining
its anomaly score. Models registering higher anomaly scores,
indicative of potential anomalies, are identified and catego-
rized, allowing us to precisely identify the corresponding ab-
normal block and determine the type of anomaly associated
with each identified GPR data block. The main contributions
of this paper are as follows:

• Our approach focuses on the inherent dynamics present
in GPR data, and leverages only limited normal GPR
data, easily obtainable in the detection area, to support
subsequent anomaly detection and categorization, en-
abling its practical usability in real-world settings.

• The introduced CuCoRes, incorporating three reservoirs
with spatial correlation adjustments in each direction,
builds multi-directional correlations among data points,
enhancing connections with nearer points while reduc-
ing those with distant ones, thus adequately and accu-
rately capturing multi-directional dynamics in GPR data.

• Representing data with fitted CuCoRes models, cou-
pled with the directly computable distance measurement
between models, allows further anomaly detection and
categorization to be effectively performed within the
category-discriminative CuCoRes model space.

2 Related Work
2.1 GPR Data Analyzing
GPR data, specifically the multi-channel 3D GPR data, pro-
vides an advanced geophysical tool for viewing what lies be-
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neath the surface. As Figure 2 shows, single-channel GPR
provides 2-dimensional (2D) data. Multi-channel GPR sys-
tems consist of antenna arrays, with each channel simultane-
ously transmitting and receiving EM waves, offering a com-
prehensive 3D subsurface visualization.

Representing a wave with a
column of gray values

A region related to a 
subsurface anomaly 

T
im

e w
indow

 (D
epth)

Detecting direction

Figure 2: Single-channel GPR data is displayed in 2D format, with
EM waves arranged horizontally by time or space and intensities
shown in grayscale. Due to wave refraction and reflection, GPR data
often requires additional analysis to accurately represent subsurface
structures. In 3D GPR data, key variations occur both along and
across EM waves, horizontally and vertically.

GPR data collects and arranges EM waves, with each point
indicating wave intensity at a specific subsurface location.
Due to the continuity of underground media and the presence
of anomalies, GPR data exhibits valuable dynamics, that is,
changing information vertically and horizontally along and
among waves. Moreover, directional scales vary, leading to
different correlations between adjacent points in various di-
rections. For example, the distance between adjacent chan-
nels is about 15 cm, the gap between rows within a channel
ranges from 2 to 6 cm, and the spacing between points within
a row, influenced by the dielectric constant, is 2 to 5 cm. Ac-
curately capturing data-inherent dynamics requires account-
ing for multiple directions and directional scale differences.

Recent DL advancements in 3D GPR data analysis fol-
low two main strategies: 1) Direct 3D processing, such as
Multiple Mirror Encoding (MME) [Liu et al., 2022] with
C3D network [Tran et al., 2015] for spatio-temporal fea-
ture extraction, and 3DInvNet, which uses a 3D CNN with
feature attention and a U-shaped encoder-decoder for mul-
tiscale feature aggregation; 2) Integrating 2D processing re-
sults for 3D data, such as UcNet [Kang et al., 2019], com-
bining CNNs with phase analysis to enhance resolution, and
[Liang et al., 2022b], comparing VGG and ResNet for clas-
sifying anomaly-associated GPR data. Nevertheless, existing
DL approaches designed for 3D GPR data require multi-type
labeled data for training or optimization, and fail to be per-
formed with only limited labeled data support.

2.2 Learning in the Model Space(LMS)
The LMS framewor3, first introduced in [Chen et al., 2013],
was initially applied to fault diagnosis in sequential data.
LMS typically employs ESN to fit individual data instances,
transitioning them into a model space represented by their
respective fitted models. This transformation allows learn-
ing algorithms to operate effectively within the model space,
leveraging the dynamics captured from the data. Over time,

3Also denoted as “Model-Space Learning”.

LMS has been adapted for various applications, including
time series classification, disease diagnosis [Bianchi et al.,
2020], and addressing concept drift [Chiu and Minku, 2022].

Existing studies [Zhou et al., 2023; Chen et al., 2024]
have investigated classifying 2D GPR data using an enhanced
ESN-based network, which captures horizontal and vertical
dynamics into fitted models. For 3D GPR data, characterized
by higher dimensions and more complex intrinsic dynamics,
a common approach is to apply LMS independently to each
channel as 2D data and then aggregate the results [Liu et al.,
2024]. However, this approach neglects inter-channel dynam-
ics. To address this, Zhou et al. [2024] proposed CubeRes,
augmenting the ESN’s hidden layer with multiple reservoirs
to better capture multi-directional dynamics within 3D data.
Despite this, CubeRes does not a priori account for spatial
scale variations across different directions in GPR data. Ad-
ditionally, while this study suggested using labeled data to
optimize fitting accuracy and model classification, the lack of
sufficient, diverse, and accurately labeled GPR data in spe-
cific detection areas limits its practical applicability.

2.3 Echo State Network (ESN): A Representative
Reservoir Computing Network

ESN, a subset of reservoir computing and recurrent neural
networks, is renowned for its simplicity and efficiency in
processing sequential data [Lukoševičius and Jaeger, 2009].
ESN features fixed, randomized input weights and a reser-
voir of randomly connected neurons (Figure 3). This reser-
voir processes historical data by transforming it into high-
dimensional states, known as “echo states”, effectively cap-
turing complex, data-inherent dynamics [Yan et al., 2024].

Input Reservoir

In
pu

t L
ay

er

O
ut

pu
t L

ay
er

Output

Figure 3: Typically, an ESN primarily consists of the input layer, a
hidden layer containing a reservoir, and the output layer.

For sequential data fitting, ESN computes a hidden state for
each point in the input sequence, and the output layer maps it
to the target sequence solved via regression.

3 Methodology
As illustrated in Figure 1, our approach consists of two stages:

• Normal Model Collection: Normal GPR data, free
from subsurface anomaly and readily available in the
detection area, is segmented along the detecting direc-
tion into same-size blocks, each independently fitted by
CuCoRes to capture its multi-directional dynamics. The
resulting fitted models, representing their respective data
blocks, are collected into a “Model Pool”.

• Underground Diagnosis: Newly collected GPR data
undergoes the same segmentation and CuCoRes fitting,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

obtaining fitted models. These models are compared to
those in the model pool, with abnormal models iden-
tified and clustered based on model dissimilarities, en-
abling the detection and categorization of corresponding
anomaly-associated GPR data blocks.

In our approach, fitting GPR data and capturing its multi-
directional dynamics via CuCoRes are crucial for data rep-
resentation and subsequent anomaly detection on fitted mod-
els. Therefore, we start with a comprehensive introduction to
CuCoRes, followed by descriptions of the two stages.

3.1 Data Fitting and Representation via CuCoRes
CuCoRes consists of an input layer, a hidden layer, and an
output layer. Notably, to accurately capture multi-directional
dynamics within 3D GPR data, CuCoRes enhances the hid-
den layer with three reservoirs, each implementing spatial
correlation adjustment, thus effectively building correlations
among points in various directions.

Fitting GPR Data by CuCoRes
Denoting a GPR data block as U ∈ RA×B×C , wherein a
data point within this block is localized by (xa, yb, zc), and
the corresponding value at that point is u(xa, yb, zc). The
iteration of CuCoRes begins at the point (x1, y1, z1) and ends
at (xA, yB , zC). Sequentially, as shown in Figure 4, each
point is sent into the hidden layer, with their hidden states
h ∈ RN×1 calculated as:

h(xa, yb, zc) = g(W ·E · h∗(xa, yb, zc)

+Winu(xa, yb, zc)),
(1)

where:
• a, b, c ∈ Z are the indices of the point (xa, yb, zc) in the
x-, y-, and z-directions, respectively. g is the activation
function tanh. Win ∈ RN×1 denotes the input weights.

• W ∈ RN×3N are reservoir weights for each direction:

W = [Wx Wy Wz] , (2)

where Wx,Wy,Wz ∈ RN×N represent the reservoir
weights along the x-, y-, and z-direction, respectively.

• E ∈ R3N×3N represents exponential spatial correlation
adjustments applied to each direction:

E =

e−(xa−xa−1)I
e−(yb−yb−1)I

e−(zc−zc−1)I

 ,

(3)
where I ∈ RN×N is the identity matrix, (xa − xa−1),
(yb − yb−1), and (zc − zc−1) refer to the distances be-
tween a point and its adjacent points in the x-, y-, and
z- direction, respectively. Introducing E assigns greater
importance to nearby points and reduces the influence of
distant points, adaptively emphasizing local spatial rela-
tionships for more accurate dynamic capture.

• h∗ ∈ R3N×1 is the concatenation of the previous hidden
states from the three directions:

h∗(xa, yb, zc) =

[
h(xa−1, yb, zc)
h(xa, yb−1, zc)
h(xa, yb, zc−1)

]
.

Reservoirs

Spacial 
Correlation
Adjustment

Iteration in three directions

1 1 1( , , )x y z

1( , , )a b cx y z

1( , , )a b cx y z

( , , )A B Cx y z

1( , , )a b cx y z 

( , , )a cbx y z

Figure 4: CuCoRes’s hidden-state iteration processes data points se-
quentially, starts at (x1, y1, z1), moves to (xA, y1, z1), then contin-
ues from (x1, y2, z1) to (xA, y2, z1), and so forth, until reaching the
end (xA, yB , zC). Each point correlates with its predecessors across
three directions, with the correlation exponentially adjusted accord-
ing to the distance between adjacent points in each direction.

In CuCoRes, Θ = (Win,Wx,Wy,Wz) are randomly ini-
tialized and fixed. The input weight Win is uniformly dis-
tributed in [−1, 1]. Wx,Wy,Wz are randomly determined
reservoir weights that describe neuron connections in the
reservoir, fulfilling the Echo State Property [Jaeger, 2001],
with a spectral radius within (0, 1). The initial hidden states:
h(x0, ·, ·) = h(·, y0, ·) = h(·, ·, z0) = 0.

During hidden-state iteration, each hidden state integrates
current and past information, inducing directional correla-
tions among neighboring points. The correlation adjustment
E modulates these correlations by strengthening connections
between nearby points and weakening those between distant
ones. Unlike existing LMS methods, 2D-ESN [Chen et al.,
2024] and C3 [Zhou et al., 2023], which manually adjust di-
rectional associations, or CubeRes [Zhou et al., 2024], which
learns them from labeled data, our approach adapts to vary-
ing directional scales in GPR data. Evolving multi-directional
correlations form a network that links each point to processed
ones, accurately capturing multi-directional dynamics.

After computing the hidden states for all data points within
the data block, the output value v for each point is calculated
from the previous hidden states:

v(xa, yb, zc) = Wouth∗(xa, yb, zc) + β, (4)

where Wout ∈ R1×3N is the output weight, β is the bias.
The fitting process is accomplished using the “next point

prediction” task [Chen et al., 2013]. It aims to predict the
value of the subsequent point based on processed ones, estab-
lishing a mapping between hidden states and corresponding
input data points. Explicitly, each output value v(xa, yb, zc),
derived from the hidden states, is required to closely match
the input u(xa, yb, zc). To achieve this, the output weights
Wout and the bias β are determined using ridge regression:

[Wout β]
T
= (H̃H̃T + λ2I3N )−1H̃u, (5)

where H̃ is augmented from the hidden state matrix H, ex-
tended by a row of ones for bias terms; H ∈ R3N×ABC is
obtained by collecting the previous hidden states of all data
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points in sequence and column-wise, with each column rep-
resenting a specific h∗(x, y, z); u ∈ RABC×1 is a vectorized
form of the input values u(x, y, z), arranged in the same or-
der as h∗(x, y, z) in H; I ∈ R3N×3N is the identity matrix;
and λ serves as a regularization.

During CuCoRes’ fitting process, the three-reservoir ar-
chitecture, spatial correlation adjustments, and the unique
hidden-state iteration of CuCoRes adeptly establish the cor-
relation between adjacent points in the data block, capturing
data-intrinsic changing information. The fitting approach in-
tegrates multi-directional dynamics within the data block into
a compact fitted CuCoRes readout model:

f(x) = Woutx+ β. (6)

This readout model provides a compact representation of the
original data block. When an anomaly arises in a data block,
it introduces atypical dynamics, causing the readout model
to exhibit distinct characteristics compared to those derived
from normal GPR data blocks. As a result, representing the
data blocks by readout models enhances category discrimina-
tion, which in turn improves the effectiveness of model clas-
sification compared to using the original data blocks.

Distance Measurement between Fitted Models
After data fitting via CuCoRes, it is essential to establish a
distance measurement to quantify the differences between the
fitted models, aiding subsequent anomaly detection on the
models. The p-norm distance [Chen et al., 2013] between
models f1(x) and f2(x) is adopted:

Dp(f1, f2) =

(∫
C

∥f1(x)− f2(x)∥pdµ(x)
)1/p

. (7)

Here, f1 and f2 represent the simplified forms of f1(x) and
f2(x), respectively; µ(x) denotes the probability density over
the input domain, and the integral range C is [−1, 1]3N . For
the sake of simplicity, p is set to 2 by default, and we assume
x follows a uniform distribution.

Given the two blocks fitted using CuCoRes, the models de-
rived for each are denoted as follows:{

f1(x) = Wout
1 x+ β1,

f2(x) = Wout
2 x+ β2.

(8)

Substituting Equation (8) into Equation (7) results in:

D2(f1, f2) ∝
1

3
∥Wout

1 −Wout
2 ∥2 + (β1 − β2)

2
. (9)

Such direct-measured pair-wise distance measurement spec-
ified in Equation (9) facilitates the usage of distance-based
learning algorithms on the fitted models.

3.2 Normal Model Collection
Given normal 3D GPR data gathered from the detection area,
we first segment them into same-size data blocks along the
detection direction4. Each block is individually fitted by Cu-
CoRes, resulting in a respective readout model. The mod-
els obtained from these normal blocks are collected into a

4Performed using a sliding window that moves along the detec-
tion direction, as described in [Zhou et al., 2024; Liu et al., 2024].

“Model Pool”. This process is described as:

M =
⋃

ri∈R
{F(U) | U ∈ S(ri)} , (10)

where M denotes the model pool, R is the collection of nor-
mal GPR data samples; ri denotes a data sample in R; S rep-
resents the segmentation process; U is a specific data blocks;
and F refers to CuCoRes fitting process.

3.3 Underground Diagnosis
Anomaly detection on the newly collected GPR data is per-
formed through the following three steps: 1) Fitting Data
Blocks via CuCoRes: Apply the same segmentation and fit-
ting procedures as described earlier, obtaining the fitted Cu-
CoRes model for each data block; 2) Model Discrimination:
For each model, find the nearest normal model in the model
pool through the model distance measurement given in Equa-
tion (9), examining its anomaly score, with overly high scores
identified to be anomalies; 3) Model Categorization: Clus-
ter the abnormal models identified in the previous step, where
each cluster signifies a type of anomaly.

The first step has been previously described and is the same
as the training stage, thus would not be repeated here. Details
for the subsequent steps are provided as follows.

Distance-based Model Discrimination
For anomaly detection in newly collected GPR data, segmen-
tation and CuCoRes fitting derive a set of fitted models (each
corresponding to a data block). Each model undergoes a
Nearest-Neighbor (NN) search in the model pool to estimate
an anomaly score, determining its abnormality.

The existence of an underground anomaly introduces dis-
tinct dynamics that differ significantly from normal GPR
data. Consequently, models fitted from such blocks deviate
noticeably from those fitted from normal data, due to the dis-
tinct dynamics captured. Specifically, models derived from
normal data tend to cluster tightly, while those derived from
anomalies are distinctly separated from the normal ones, and
positioned far from normal models. To assess the anomaly
score for a newly fitted model f , the distance to its nearest
neighbor model in the model pool M is computed, and the
anomaly score is defined as:

score(f) = min
f∗∈M

D2(f
∗, f). (11)

where f is a newlly fitted model, f∗ denotes one of the nor-
mal models in model pool M, and D2 is the distance mea-
surement between models defined in Equation (9).

A binary classifier H is then employed to discriminate nor-
mal (denoted as 1) and abnormal (denoted as 0) models:

H(f) =

{
0 if score(f) > τ,

1 if socre(f) ≤ τ,
(12)

where f represents the model under evaluation, score is given
in Equation (11), and τ is a predefined threshold.

Model Categorization
Through the above steps, models fitted from anomaly data
blocks are identified. Different underground anomalies intro-
duce unique dynamics in GPR data due to distinct changing
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information along and among the collected EM waves. As
a result, models from different anomaly types differ signifi-
cantly, while those from the same anomaly type are similar
due to consistent inherent dynamics. This forms a category-
discriminative CuCoRes model space, where clustering ap-
proaches5 could be performed to categorize models, with
each cluster representing a specific anomaly type.

4 Experimental Study
All experiments are conducted using Python 3.6 on a desktop
with an Intel Core i5-11500 2.70-GHz CPU, 16-GB RAM,
and a GeForce RTX 3080Ti 12G graphics card. For the im-
plementation of our approach, we initialize the input weights
and reservoir weights of CuCoRes randomly following a stan-
dard normal distribution. The size of each reservoir is default
set as 50, the spectral radii are set to 0.9. The anomaly score
threshold τ is defined as the maximum of the minimum dis-
tances between any normal models. As for the clusters, we
use the official implementation from https://scikit-learn.org/.

4.1 The Utilized 3D GPR data
GPR data is collected from cement and asphalt roads using
a 3D GPR system with a 16-channel antenna. The data is
segmented into 16×200×200 blocks, representing a physical
area of approximately 2.5m (width) × 4m (detecting direc-
tion) × 4m (depth). Each block, except for normal ones, con-
tains an anomaly. The number of blocks per type is shown in
Table 1. Three main types of subsurface anomalies are iden-
tified: cavities, looseness, and cracks. The GPR data also
includes pipelines and manhole covers, also crucial to detect.
Examples of GPR data blocks are shown in Figure 5.

Normal Cavity Looseness Crack Pipeline Manhole

200 192 203 191 201 192

Table 1: Number of normal and anomaly GPR data blocks by type.

4.2 Anomaly Detection of GPR Data
For underground diagnosis, the initial focus involves identify-
ing anomalies in newly collected GPR data using only previ-
ously acquired normal data free from subsurface anomalies or
other objects. We randomly select 100 normal data blocks for
initialization. For testing, the remaining 100 normal blocks
and 20 blocks from each anomaly type are used.

To our knowledge, apart from supervised methods requir-
ing multi-type labeled GPR data (discussed in Section 2), no
existing research tailored for 3D GPR data performs anomaly
detection on new data given only limited normal data sup-
port. We evaluate our approach against recent baselines that,
while not specifically designed for GPR data, are able to uti-
lize solely normal GPR data for anomaly detection in newly
collected data, including: 1) Voxel-based anomaly detection

5Clustering techniques such as K-Means [Hartigan and Wong,
1979], Agglomerative Clustering [Ackermann et al., 2014], or
Fuzzy C-Means [Bezdek et al., 1984] could be applied, support with
the introduced model distance measurement.

Normal

Crack

Cavity

Pipeline Manhole

Looseness

Figure 5: Several examples of 3D GPR data blocks containing dif-
ferent subsurface objects.

Methods Precision(Pre) Recall(Rec) F1-Score

Patchcore-3D 83.2% ± 2.5% 86.0% ± 2.1% 84.6% ± 1.8%
STEAL 84.8% ± 1.6% 82.7% ± 2.4% 83.7% ± 2.0%
3D-VAE 86.0% ± 2.3% 84.6% ± 1.1% 85.3% ± 1.7%
MemAE 79.2% ± 2.1% 81.6% ± 2.8% 80.4% ± 1.4%
f-AnoGAN 81.6% ± 1.0% 79.8% ± 2.6% 80.7% ± 2.2%
SimpleNet 80.9% ± 1.4% 79.3% ± 2.3% 79.6% ± 1.2%
CubeRes (w/o) 87.9% ± 1.9% 87.3% ± 2.5% 87.6% ± 2.0%

CuCoRes (ED.) 90.1% ± 2.6% 89.2% ± 1.8% 89.7% ± 2.0%
Our Approach 92.2% ± 1.8% 91.7% ± 1.2% 91.9% ± 1.4%

Table 2: Anomaly detection using our approach against baselines in
terms of Pre, Rec, and F1-Score.

methods, which treats 3D DPR data as a three-dimensional
matrix: Patchcore-3D [Frolova et al., 2023], Synthetic Tem-
poral Anomaly Guided End-to-End Video Anomaly Detec-
tion (STEAL) [Astrid et al., 2021], 3D-VAE [Brock et al.,
2016], MemAE [Gong et al., 2019], and Cube Reservoir
Computing without optimization (CubeRes w/o) since only
normal data is provided [Zhou et al., 2024]; 2) Image-based
anomaly detection approaches, in which 3D DPR data is con-
sidered as a multi-channel image: f-AnoGAN [Schlegl et al.,
2019], and SimpleNet [Liu et al., 2023];

The results6 are presented in Table 2. Voxel-based meth-
ods like Patchcore-3D, STEAL, etc, treat 3D GPR data as
three-dimensional matrices, but struggle with the given in-
sufficient normal data for effective optimization, failing to
distinguish variations among normal and abnormal patterns
in GPR data. Image-based methods, such as f-AnoGAN and
SimpleNet, designed for 2D image format, overlook effec-
tive changing information of a certain dimension and fail to
adequately capture the internal dynamics in 3D GPR data.
Building correlations along and among EM waves, fitting
GPR data via CuCoRes adequately and accurately capturing
the data-inherent multi-directional dynamics. Consequently,
CuCoRes models fitted from anomaly blocks, markedly dif-
fer from those derived from normal. Focusing on the data-

6CuCoRes (ED.) refers to the result obtained by using the Eu-
clidean distance to measure the difference between CuCoRes mod-
els, subsequently discussed in Subsection 4.4: Ablation Study.
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inherent changing information, our approach demonstrates
superior anomaly detection performance compared to base-
lines, even with the given minimal normal data support.

4.3 The Model/Feature Clustering Results
After identifying abnormal models, our approach employs
clustering to categorize these models, grouping data blocks
originating from the same type of anomalies. The introduced
CuCoRes fits and captures the multi-directional dynamics
within the GPR data without offline iterative training. The
fitted models serve as representations of the original blocks.

(a) CuCoRes (b) C3D (c) I3D

(d) R(2+1)D (e) R3D (f) MC3

Figure 6: CuCoRes model space demonstrates enhanced category
discrimination: 1) Marked separation between normal and abnor-
mal models ensures reliable anomaly detection; 2) Smaller distances
within classes and larger distances between classes allow for effec-
tive clustering of different anomaly types.

We adopt feature extractors including, 3D ResNet (R3D)
[Hara et al., 2017], 3D Convolutional Neural Networks
(C3D) [Tran et al., 2015], (2+1)D Convolutional Networks
(R(2+1)D) [Tran et al., 2018], Mixed Convolutions 3D and
2D (MC3) and Inflated 3D ConvNet (I3D) [Carreira and Zis-
serman, 2017] on the identified abnormal blocks7. We also
utilized CubeRes (w/o) [Zhou et al., 2024] for data fitting and
representation. These features/models are clustered by three
widely used clustering algorithms: K-Means, Agglomerative
clustering (AC), and Fuzzy C-Means (FCM).

Table 3 shows that CuCoRes surpasses other methods in
anomaly clustering. Using t-SNE [Van der Maaten and Hin-
ton, 2008], we visualized the fitted models and other fea-
tures in 2D space (Figure 6), where each point represents a
fitted model or feature associated with a GPR data block. Al-
though GPR data appears image-like, it fundamentally rep-
resents EM wave collections with unique dynamics arising
from variations along and among the waves caused by dif-
ferent underground anomalies. Pre-trained deep neural net-
works, primarily designed for visual feature extraction, strug-
gle to capture and distinguish these dynamics effectively. Cu-
CoRes, focusing on data-inherent changing information, cap-
tures multi-directional dynamics by establishing correlation-

7Pre-trained on Kinetics dataset [Carreira and Zisserman, 2017].

Methods K-Means AC FCM

Acc ARI NMI Acc ARI NMI Acc ARI NMI

C3D 0.57 0.36 0.55 0.69 0.57 0.67 0.64 0.46 0.60
MC3 0.85 0.72 0.76 0.93 0.83 0.85 0.85 0.74 0.77
R(2+1)D 0.76 0.58 0.68 0.81 0.64 0.74 0.60 0.44 0.57
I3D 0.74 0.69 0.79 0.76 0.72 0.83 0.75 0.69 0.78
R3D 0.82 0.62 0.67 0.73 0.61 0.72 0.83 0.65 0.69
CubeRes (w/o) 0.90 0.87 0.86 0.91 0.87 0.88 0.90 0.85 0.87

CuCoRes (w/E) 0.92 0.86 0.85 0.92 0.88 0.88 0.92 0.86 0.87
CuCoRes 0.96 0.91 0.90 0.97 0.93 0.93 0.95 0.89 0.91

Table 3: The models/features clustering results: Accuracy (Acc),
Adjusted Rand Index (ARI), and Normalized Mutual Info (NMI).

adjusted connections within the data block across multiple di-
rections. Owing to the distinct dynamics captured, the mod-
els derived from CuCoRes exhibit superior clustering perfor-
mance on different types of subsurface anomalies.

4.4 Ablation Study
Our approach incorporates three key attributes: 1) Three
reservoirs in CuCoRes’ hidden layer to adequately capture
multi-directional dynamics; 2) Spatial correlation adjust-
ments to strengthen correlations with nearby points while re-
ducing those with distant ones, enabling accurate dynamic
capture; 3) A direct-solvable model distance measurement to
evaluate the difference between CuCoRes models.

For the first attribute, we exclude experiments with the
LMS method using ESN (with one reservoir) to fit GPR
data blocks [Liu et al., 2024], due to the impractically large
size of the ESN readout model, which is 200×16×reservoir
size when fitted along the detecting direction, and is not
directly classifiable. In contrast, CuCoRes captures multi-
directional dynamics more compactly with a fitted model size
of 3×reservoir size, enabling efficient learning on the models.

For the second, we perform clustering on CuCoRes mod-
els but remove spatial correlation adjustments E during fit-
ting, denoted as CuCoRes (w/o E) in Table 3, where intro-
ducing spatial correlation adjustments improves clustering by
about 5%, achieving a more accurate dynamic capture and
category-discriminative model space. As for the third, using
Euclidean Distance to replace the introduced model distance
measurement, as indicated by CuCoRes (ED.) in Table 2, de-
creases the effectiveness of anomaly detection by about 3%.

5 Conclusion
This study proposes learning in the CuCoRes model space
for anomaly detection in 3D GPR data: 1) CuCoRes, incor-
porating three reservoirs and spatial correlation adjustment,
effectively captures multi-directional dynamics into compact
fitted models; 2) Representing GPR data with fitted models
enables anomaly detection in category-discriminative model
space, distinguishing anomalies while grouping same-type
ones; 3) Our approach relies on limited, easily accessible nor-
mal GPR data, enhancing practicality in real-world scenarios.
Future work will explore reconstructing anomaly regions for
intuitive visualization to aid repairs.
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