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Abstract
Although previous studies have applied diffusion
models to time series forecasting, these efforts have
struggled to preserve the intrinsic temporal cor-
relations within the series, leading to suboptimal
predictive outcomes. This failure primarily re-
sults from the introduction of independent, identi-
cally distributed (i.i.d.) noise. In the forward pro-
cess, the addition of i.i.d. noise to the time series
gradually diminishes these temporal correlations.
The reverse process starts with i.i.d. noise and
lacks priors related to temporal correlations, which
can result in directional biases during sampling.
From a frequency-domain perspective, noise sim-
ilarly disrupts the low-frequency-dominated struc-
ture of trend components, making it difficult for the
model to learn long-term temporal dependencies.
To address these limitations, we introduce a decom-
position prediction framework to complement the
novel Temporal Correlation-Empowered Diffusion
Model. Overall, We decompose the time series into
trend and residual components, predict them using
a base model and a diffusion model, and then com-
bine the results. Specifically, a frequency-domain
MLP model was adopted as the base model due to
its not distorting the original sequence, and better
the capture of long-range temporal dependencies.
The diffusion model incorporates two key modules
to capture short- and mid-range temporal correla-
tions: the Maintaining Temporal Correlation Mod-
ule and the Redesigned Initial Module. Extensive
experiments across multiple datasets demonstrate
that the proposed method significantly outperforms
related strong baselines.

1 Introduction
Time series forecasting is a fundamental task that is crucial
in many areas, such as financial markets [Aczel and Jose-
phy, 1991; Jiang et al., 2023] and weather systems [Shen et
al., 2021]. Specifically, time series are sequences composed
of points that are temporally correlated and numerically re-
lated. As an essential characteristic of time series, tempo-
ral correlation, also known as temporal dependence, refers

to the relationship between different points over time [Liu et
al., 1997; Wu et al., 2024] and is crucial for making accu-
rate predictions [Zeng et al., 2023; Li et al., 2024]. More-
over, Time series forecasting can be viewed as a genera-
tive task that generates a prediction sequence conditioned on
a historical sequence. As state-of-the-art generative mod-
els, diffusion models—known for their remarkable success
in fields like computer vision [Dhariwal and Nichol, 2021;
Kawar et al., 2021] and computational chemistry [Anand and
Achim, 2022]—have been naturally introduced to the task of
time series forecasting.

Recent research on diffusion models for time series fore-
casting [Rasul et al., 2021; Tashiro et al., 2021; Shen and
Kwok, 2023; Li et al., 2023] has shown promising results.
Nevertheless, as will be empirically demonstrated in our ex-
perimental section 4.3, diffusion methods often fail to ef-
fectively preserve the intrinsic temporal dependencies of
time series [Ma et al., 2024], naturally leading to a decline in
modeling performance. This shortcoming can be attributed
to the independent and identically distributed (i.i.d.) Gaus-
sian noise. Due to stochasticity, in the forward process,
adding Gaussian noises over too many diffusion steps makes
each time point approach independent Gaussian distribution,
which can intuitively result in the disappearance of temporal
correlation. In the reverse processes, these models typically
start from i.i.d. noise, which lacks prior knowledge of tempo-
ral dependencies during sampling, resulting in generated time
series with insufficient temporal correlation.

Meanwhile, due to the aforementioned properties of the
diffusion model, not all components of time series data are
well-suited for prediction using diffusion model [Selesnick
et al., 2014]. In particular, the trend component, extracted
using the classical Moving Average method [Chen et al.,
2021], exhibits smooth variations, with energy primarily
concentrated in the low-frequency domain, thereby reflect-
ing long-term temporal dependencies [Zeng et al., 2023;
Chen et al., 2021]. However, the addition of noise can dis-
rupt its temporal correlation. From a frequency domain
perspective, adding noise with a uniform frequency distribu-
tion is equivalent to introducing significant high-frequency
energy into a predominantly low-frequency signal [Walters
and Heston, 1982]. This interference hinders the model’s
ability to learn low-frequency features, thereby affecting the
output’s long-term temporal dependencies.
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To address these challenges, we introduce a decompo-
sition prediction framework to complement the Temporal
Correlation-Empowered Diffusion Model, together referred
to as TCDM. The framework adopts the divide-and-conquer
approach. It begins by decomposing the time series into two
components: a trend component and a residual component.
For the trend component, characterized by long-term tempo-
ral correlations and energy concentrated in the low-frequency
domain, we utilize a frequency-domain MLP-based model.
This model more easily learns compact low-frequency rep-
resentations, thereby enhancing its ability to effectively cap-
ture long-term temporal dependencies. The residual compo-
nent, containing significant noise and seasonal information,
primarily reflecting short- and mid-range temporal dependen-
cies, is processed using a diffusion model. The diffusion
model is utilized for its strong generative and denoising ca-
pabilities, while the residual component’s broad spectral dis-
tribution ensures stable resistance to noise during diffusion
training.

Specifically, during the forward process of diffusion, we in-
troduce the Maintaining Temporal Correlation Module. This
module is designed to handle the noise added at each time
step ensuring that the model can still learn temporal correla-
tions even at larger diffusion step. Concurrently, during the
reverse process sampling, we specifically design the variance
to continuously steer towards preserving temporal correla-
tions. Meanwhile, fewer diffusion steps in the reverse pro-
cess help maintain the internal temporal correlations of the
data more effectively. By redesigning the initial state of the
reverse process, achieved by truncating the diffusion process,
we enhance the preservation of internal temporal correlations.
This strategy also reduces the number of steps required in
both the forward and reverse process.

In this work,we introduce a decomposition-based pre-
dictive framework to complement the novel temporal
correlation-empowered diffusion model for multivariate time
series forecasting. Our experiments across various real-world
datasets demonstrate that the model achieves state-of-the-art
performance. Our contributions are summarized as follows:

• We propose an innovative decomposition framework for
multivariate time series forecasting that integrates a base
model with a diffusion model to capture long-term and
short-term temporal dependencies separately.

• We focus on the overall design of the temporal cor-
relation in the diffusion model, which is divided into
three key aspects: noise addition, initial state, and the
sampling process. Each element is strategically imple-
mented to improve the preservation of temporal correla-
tions throughout the model.

• We demonstrate the state-of-the-art performance of pro-
posed method through experiments on various real-
world multivariate time series forecasting datasets.

2 Background
2.1 Denoising diffusion probabilistic models
Diffusion models comprise a forward diffusion process and a
backward denoising process. Beginning with the widely rec-

ognized denoising diffusion probabilistic model [Ho et al.,
2020]. The data distribution x0 ∼ q(x0) is defined along
with a Markovian noising process q that gradually adds noise
to the data x0 to produce noised samples xT . Specifically,
each step of the noising process adds Gaussian noise accord-
ing to a variance schedule given by βt:

q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI). (1)

Furthermore, q(xt | x0) can be expressed as a Gaussian dis-
tribution. With αt := 1− βt and ᾱt :=

∏t
s=0 αs,

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

It is sufficient to train a neural network to predict a mean µθ:

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (3)

To train this model such that p(x0) learns the true data distri-
bution q(x0), the model can be trained by optimizing the vari-
ational lower bound Lvlb for pθ(x0). Training µθ(xt, t) and
training ϵθ(xt, t) are equivalent [Luo, 2022]. They demon-
strated that predicting the noise added at each step is effec-
tively the same as predicting x0 at each step. Rather than
directly parameterizing µθ(xt, t) as a neural network, the
methodology involves training the model ϵθ(xt, t) to predict
the noise ϵ. The corresponding simplified objective is given
by:

Lsimple := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (4)

The mean µθ(xt, t) can also be derived using a denoising net-
work xθ, which estimates the clean data x0 given xt. This es-
timate xθ(xt, t) allows the following expression for µθ(xt, t)
to be set:

µθ(xt, t) =

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

xθ(xt, t), (5)

The parameter θ is then optimized by minimizing the loss
function as below:

Lsimple : = Et,x0,ϵ

[
∥x0 − xθ(xt, t)∥2

]
. (6)

3 Method
The key components of our model include: (i) Decomposi-
tion of Time Series, (ii) Maintaining Temporal Correlation
Module, and (iii) Redesigned Initial Module.

3.1 Problem Formulation
When using a diffusion model for time series forecasting, our
objective is to predict future values y0

1:F ∈ RC×F based on
the observed historical data x1:H ∈ RC×H , where x1:H (de-
noted as X) is defined as {x1, x2, . . . , xH | xt ∈ RC}. and
y0
1:F (denoted as Y0) is defined as {y01 , y02 , . . . , y0F | y0t ∈

RC}. The superscript t in yt1:F denotes that these values are
at the t-th step of diffusion. Thus, y0

1:F , the superscript 0 in-
dicates that they are at the 0-th step of the diffusion process,
meaning these are the true values before any noise is added.
The conditioning of diffusion models for time-series [Shen
and Kwok, 2023] can be done by conditioning the generation
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Figure 1: An illustration of the proposed TCDM: The lookback window X is decomposed into XT and XR, while the target Y0 is decom-
posed into Y0

T and Y0
R.

of the forecast through the reverse process on historical data,
as follows:

pθ
(
y0:T
1:F | c

)
= p

(
yT
1:F | c

) T∏
t=1

pθ
(
yt−1
1:F | yt

1:F , c
)
, (7)

where c is the condition, c = F (x1:H) and F is a conditional
network.

3.2 Overview of TCDM
As depicted in Figure 1, during the training process, the tar-
get Y0 is initially decomposed into the trend component Y0

T
and the residual component Y0

R, also denoted as R0. Simi-
larly, X is decomposed into XT and XR. The Base Model
employs XT to predict the trend component Y0

T . Concur-
rently, the residual component R0 is predicted using a dif-
fusion model conditioned on XR. The diffusion model inte-
grates the Maintaining Temporal Correlation Module and the
Redesigned Initial Module. The predictive outputs from dif-
fusion model are combined with those from the Base Model
to generate the final results.

3.3 Decomposition of Time Series
Given that time series are generally modeled as a combina-
tion of trend, seasonal, and noise components, we refer to the
seasonal and noise components as the residuals. The addi-
tion of noise can disrupt the intricate relationships within the
data. To address this, we extract the more predictable trend
component using the classical seasonal-trend decomposition
technique described by wu2021autoformer.

y0i = ỹ0i +∆y0i , (8)

the data point at the ith time step is denoted by y0i . The trend
component, represented as ỹ0i , is computed as a moving aver-
age within a fixed-length time window, effectively capturing
the underlying trend of the time series. The residual com-
ponent, denoted by ∆y0i , captures the cyclical variations and

Figure 2: Maintaining Temporal Correlation Module: This module
features an autoregressive noise design that introduces noise to var-
ious data points within the same diffusion step during the forward
process. The sampling process aimed at temporally correlated di-
rections is illustrated in the lower half of the figure.

the influence of noise after the trend has been removed. Simi-
larly, the lookback window X is also decomposed. The model
uses the trend part of X to predict the trend part of the target
Y0, and the residual part of X to predict the residual part of
Y0. This approach help to ensure consistency between the
training and prediction data.

Base Model Selection
The moving average can be viewed as the convolution of the
input signal Y 0 with a uniform filter h[n]. The uniform filter
is defined as:

h[n] =

{
1
M , −M−1

2 ≤ n ≤ M−1
2

0, otherwise
(9)
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Therefore, the output of the moving average can be expressed
as:

ỹ0n = (Y ∗h)[n] =
∞∑

k=−∞

y0k·h[n−k] =
1

M

(M−1)/2∑
k=−(M−1)/2

y0n−k

(10)

Proposition 1. A symmetric moving average filter in the time
domain is equivalent to a low-pass filter in the frequency do-
main.

The proof is provided in the Appendix.
In the frequency domain, trend components are char-

acterized by energy concentrated in the low-frequency re-
gion of the spectrum. When training a frequency-domain-
based MLP, the input features primarily capture this valu-
able low-frequency information, allowing the model to ef-
fectively learn these features. Therefore, theoretically, a
frequency-domain-based MLP model is more suitable for
trend component forecasting. Experimentally, as shown in
the Appendix, we compare the predictive performance of
a frequency-domain-based MLP, a time-domain-based MLP,
and a transformer-based model. The results demonstrate that
the frequency-domain-based MLP outperforms the others.
The detailed structure of the Base Model is also provided in
the Appendix.

After obtaining the prediction model for the trend compo-
nent, we proceeded to design a diffusion model for predicting
the residual component. Due to the complexity of these cycli-
cal patterns and the uncertainty of noise, the residual compo-
nent is a key factor that affects the accuracy of time series
predictions.

3.4 Maintaining Temporal Correlation Module
We use the Residual part of Y: R0 as the initial state of the
forward process in the diffusion model,thus it also serves as
the output of the diffusion model. Then for the transition
equation utilized during sampling, pθ(R

t−1 | Rt, R0) =
N (Rt−1;µθ(R

t, t),Σθ(R
t, t)), where µθ(R

t, t) is formu-
lated as

√
αt(1−ᾱt−1)

1−ᾱt
Rt +

√
ᾱt−1βt

1−ᾱt
Rθ(Rt, t), with Rθ(Rt, t)

representing the trained diffusion network. Our Temporally
Correlated Noise is specifically designed for µθ(Rt, t), and
accordingly, the Sampling Towards Temporal Correlation is
tailored for Σθ(Rt, t).And details on the initial state of sam-
pling presented in the Redesigned Initial Module.

Temporal Correlated Noise in Forward Process
For the target data Rt = rt1:F , composed of time points
rt1, r

t
2, . . . , r

t
F , during the forward diffusion process, the noise

added at diffusion step t to the i th data point rt−1
i is denoted

by ϵti:
rti =

√
1− βtr

t−1
i + βtϵ

t−1
i . (11)

We propose the introduction of temporally correlated noise
during the forward process, enabling the model to learn more
temporal correlations even for larger diffusion step t. That
means µθ(Rt, t) will exhibit temporal correlation during the
sampling process.

Our noise design emulates the method of noise addition
used in diffusion models as referenced in Equation 1. We
have modeled the noise as a Markov process (first-order au-
toregressive process) where the noise for the next time point i
is based on the noise at the current time point i− 1, with new
random variations introduced at each subsequent time point.
The noise added at time t to the ith timestep data point rt−1

i
is denoted by ϵti.

ϵti :=
√
λiϵti−1 +

√
1− λibi,

bi ∼ N (0, 1), ϵt0 ∼ N (0, 1).
(12)

The variance design mentioned above ensures that Var(ϵti)
remains constant at 1, ensuring that the noise level added at
each time point within the target window is the same as i
increases.

This design ensures that as the diffusion step t increases,
a correlation is maintained within the same target window ,
even when t becomes large. Although this correlation is in-
tentionally engineered, when λi is set appropriately, the Tem-
poral Correlated Noise forces the model to preserve local cor-
relations between consecutive data points, enabling the model
to automatically adjust to the correct correlations.

Sampling Towards Temporal Correlation
Following the precedent set by [Ho et al., 2020], Σθ(Rt, t) is
typically configured as σ2

t I, then

Rt−1 = µθ(R
t, t) + σtz

t, zt ∼ N (0, I). (13)

This formulation models the transition from Rt to Rt−1, with
the noise variance governed by σ2

t . Our objective in the re-
verse process is to impart temporal correlation priors to the
model. Our optimization goal is to minimize the KL di-
vergence DKL(q(Rt−1|Rt, R0)∥pθ(Rt−1|Rt)). To echo the
noise in the forward process, during the sampling phase, we
adjust the zt values to facilitate sampling in a direction that
respects the sequence correlations. Consequently, we define:

zt = ϵar = [ϵt0, ϵ
t
1, . . . , ϵ

t
F ], (14)

where ϵti is sampled by Equation 12, transforming the sam-
pling equation as follows:

Rt−1 = µθ(R
t, t) + σtϵar, (15)

this approach ensures that the sampling process is optimally
aligned with the inherent temporal dynamics of the sequence.

As illustrated in Figure 3, the top panel presents the sce-
nario ‘without Maintaining Temporal Correlation Module’,
where the sampled µθ(R

t, t) can exhibit significant fluctua-
tions due to the absence of guidance on temporal correlations.
In this scenario, zt adheres to a standard normal distribution,
leading to a spherical sampling range that signifies indiscrim-
inate sampling across all directions. Conversely, the bottom
panel, labeled ‘with Maintaining Temporal Correlation Mod-
ule’, depicts µθ(Rt, t) being influenced by noise specifically
tailored for temporal correlations, which directs the sampling
towards Rtarget. The design of ϵar in this scenario makes the
sampling range elliptical, enhancing sampling along the axes
of temporal correlations. Thus, the final sampled outcome
R0 is more likely to closely approximate Rtarget, resulting in
superior generative results.
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Figure 3: Diagram of Sampling Towards Temporal Correlation,
where proximity to the upper-left corner indicates closer alignment
with the temporal correlations of the target time series.

3.5 Redesigned Initial Module
Instead of relying on manually designed functions, we sug-
gest halting the diffusion process before it reaches a state
close to pure noise and then initiating the reverse process
from that point. By doing so, the initial state of the reverse
process retains the natural temporal correlations inherent in
the time series, rather than those imposed by artificial design.

When truncating the diffusion process at time S, the for-
ward process is halted at RS . Therefore, we maintain the
original noise schedule {β1, β2, . . . , βT } and select the sub-
set {β1, β2, . . . , βS+1} as the new noise schedule[Zheng et
al., 2022]. This approach retains the remaining original dif-
fusion process. Since RS has not fully diffused into a noise-
dominated state, reverse sampling from Gaussian noise is in-
feasible. To address this issue, a generator is necessary to
obtain the data distribution at S. This is accomplished using
a Generative Adversarial Network (GAN) [Xiao et al., 2021].

During the reverse process, a generator Gϕ is required to
produce RS , such that RS = Gϕ(z), where z ∼ N (0, I).
If we approximate q(RS+1 | RS) ≈ q(RT ) and q(RT ) ∼
N (0, I), then

Gϕ(R
T ) =RS =

√
αS+1 (1− ᾱS)

1− ᾱS+1
RT

+

√
ᾱsβS+1

1− ᾱS+1
Rθ(RT , S + 1).

(16)

This can be interpreted as enabling the diffusion model to use
RT to reach RS with one step of the reverse process[Wang
et al., 2024]. Therefore, the optimization objective is to min-
imize the KL divergence between the prior distribution of the
forward process q(RS) and the posterior distribution pϕ(R

S)
, where RS is generated in one step by the generator

LS(ϕ) := DKL
(
q(RS)∥pϕ(RS)

)
. (17)

Referring to Equation 6, since the preserved parts of the dif-
fusion process remain unchanged, our new loss function is

defined as:

LGD :=
S−1∑
t=1

Lt(θ) + LS(ϕ). (18)

This represents the final version of the loss function for the
diffusion model, where Lt(θ) is set as the version predicting
the initial value R0. The generator Gϕ is adversarially opti-
mized using a discriminator Dψ , details of Dψ are provided
in the appendix. The optimization objective LS(ϕ)is as fol-
lows:

min
ϕ

max
ψ

ERS [logDψ(R
S)]

+ ERS [log(1−Dψ(Gϕ(R
T )))].

(19)

Therefore, the denoising network of the diffusion model is
trained using Rt, with the diffusion step t as input and XR as
a condition, aiming to output Rt−1. This denoising network
also acts as the generator G for the reverse process, hence
during training, we employ adversarial training of the de-
noising network and the discriminator D. Once trained, dur-
ing inference, Gaussian noise RT is inputted into G, which
generates predictions RS . These are then iteratively sam-
pled through the Maintaining Temporal Correlation Module
to eventually produce the predicted YR, which, when com-
bined with the Base Model’s predicted YT , yields the final
outputs.

4 Experiments
4.1 Experiment Setup
We conducted experiments on 9 public datasets [Meijer and
Chen, 2024], including NorPool, Caiso, Traffic, Electricity,
Weather, Exchange, ETTh1, ETTm1, and Wind. Each of
these datasets comprises multivariate time series. Detailed
descriptions and Implementation Details are provided in Ap-
pendix. The history length, chosen from the set of (96, 192,
336, 720), and 1440 based on the validation set performance,
informs the model’s temporal context. A prediction length of
168 was selected for the ETTm1, Wind, Traffic, Electricity,
ETTh1, and Exchange datasets. For the NorPool and Caiso
datasets, a longer prediction length of 720 was opted to ac-
commodate their unique temporal dynamics.

Evaluation Metrics
Following previous studies, the experiments utilized Mean
Squared Error (MSE) to measure the predictive performance
of the models. To ensure the results’ convincing nature, we
averaged the results over 10 runs for each experiment.

4.2 Overall Performance
Table 1 shows the results of multivariate predictions. Non-
autoregressive diffusion models TimeDiff for time series have
strong predictive abilities, suggesting that diffusion models
are promising. Our method outperforms not only existing
diffusion-based ones but also other baselines. It shows sig-
nificant improvement on complex datasets like ETTm1 and
ETTh1. Time series decomposition helps the model under-
stand the data better. However, for Casio and Traffic, the
obvious periodicity of the sequences may cause additional
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NorPool Caiso Weather ETTm1 Wind Traffic Electricity ETTh1 Exchange Avg Rank

Our Model 0.655 (1) 0.132 (2) 0.211 (1) 0.323 (1) 0.881 (2) 0.445 (2) 0.161 (1) 0.396 (1) 0.160 (1) 1.333 (1)
TimeDiff 0.664 (2) 0.138 (4) 0.219 (4) 0.330 (3) 0.875 (1) 0.449 (3) 0.172 (5) 0.405 (2) 0.169 (4) 3.111 (2)
TimeGrad 1.105 (14) 0.242 (12) 0.308 (13) 0.479 (11) 1.052 (11) 0.674 (9) 0.253 (12) 0.612 (12) 0.290 (9) 11.444 (12)
CSDI 0.801 (10) 0.191 (7) 0.280 (9) 0.477 (10) 1.045 (10) - - 0.497 (8) 0.261 (7) 8.714 (8)
SSSD 0.748 (7) 0.208 (9) 0.275 (8) 0.430 (9) 1.016 (9) 0.721 (10) 0.225 (10) 0.561 (11) 0.301 (11) 9.333 (9)
D3VAE 0.765 (9) 0.238 (11) 0.291 (10) 0.351 (7) 1.013 (8) 0.781 (13) 0.206 (8) 0.504 (10) 0.316 (13) 9.889 (10)
FreTS 0.669 (3) 0.135 (3) 0.225 (6) 0.328 (2) 0.895 (4) 0.470 (5) 0.170 (4) 0.425 (4) 0.162 (2) 3.667 (3)
TimesNet 0.682 (6) 0.130 (1) 0.215 (2) 0.341 (5) 0.905 (6) 0.601 (6) 0.172 (6) 0.433 (7) 0.221 (6) 5.000 (6)
PatchTST 0.671 (4) 0.139 (6) 0.224 (5) 0.333 (4) 0.891 (3) 0.464 (4) 0.165 (2) 0.430 (6) 0.165 (3) 4.111 (4)
iTransformer 0.675 (5) 0.138 (5) 0.217 (3) 0.344 (6) 0.899 (5) 0.437 (1) 0.168 (3) 0.428 (5) 0.170 (5) 4.222 (5)
FedFormer 0.752 (8) 0.205 (8) 0.272 (7) 0.389 (8) 1.012 (7) 0.609 (7) 0.205 (7) 0.417 (3) 0.267 (8) 7.000 (7)
Autoformer 0.836 (11) 0.226 (10) 0.302 (11) 0.513 (13) 1.083 (13) 0.615 (8) 0.212 (9) 0.498 (9) 0.302 (12) 10.667 (11)
Pyraformer 0.972 (12) 0.273 (14) 0.305 (12) 0.494 (12) 1.061 (12) 0.745 (11) 0.257 (13) 0.641 (14) 0.322 (14) 12.667 (13)
Informer 0.980 (13) 0.242 (13) 0.315 (14) 0.541 (14) 1.168 (14) 0.779 (12) 0.250 (11) 0.625 (13) 0.298 (10) 13.000 (14)

Table 1: Testing MSE in the multivariate setting. Number in brackets is the rank. The best is in bold. CSDI runs out of memory on Traffic,
Electricity.

errors when time series decomposition is used. Our model
achieved the best results across six datasets, demonstrating
its advanced capabilities. Details of the model and additional
result visualizations are provided in the Appendix.

Additionally, we selected a portion of the prediction re-
sults for demonstration. As shown in Figure 4, our method
aligns more closely with the actual temporal values on the
ETTm1 dataset compared to other methods. This chart illus-
trates the differences between non-autoregressive diffusion
models, represented by TimeDiff, and autoregressive diffu-
sion models, exemplified by CSDI. CSDI suffers from er-
ror accumulation, leading to subpar predictions, especially in
capturing significant peaks. TimeDiff addresses the issue of
error accumulation but fails to adequately model the inter-
nal correlations within the sequence. Our TCDM can predict
values across different timestamps very accurately. This fur-
ther demonstrates the effectiveness of our method in captur-
ing seasonal and trend patterns.

4.3 Designing Criteria to Validate the Temporal
Correlation of Predicted Series

For the predicted series YP and the actual series YT , we
aim to quantitatively measure the difference in their tempo-
ral correlations. Initially, we compute the partial autocorre-
lation coefficients for each feature channel i within the range
{1, . . . , D}. Employing partial autocorrelation coefficients
is advantageous as they mitigate the confounding influences
of intermediate variables, thus more precisely delineating the
direct relationships between two variables. Using the mean
squared error helps to limit the disproportionate impact of any
single channel. Given a specific lag value k, the partial auto-
correlation coefficients for both series are calculated and de-
noted by ϕi,kP and ϕi,kT , respectively. After setting a maximum
lag value E, we can generate the arrays [ϕi,1P , ϕi,2P , . . . , ϕi,EP ]

and [ϕi,1T , ϕi,2T , . . . , ϕi,ET ]. The index, calculated as

1

D

1

E

D∑
i=1

E∑
j=1

(ϕi,jP − ϕi,jT )2.

We propose and refer to it as the Normalized Partial Au-

tocorrelation Difference Index (N-PADI). A lower N-PADI
value indicates that the predicted series effectively captures
the temporal correlations of the actual series. From the data

TCDM TimeDiff FreTS TimeGrad PatchTST

ETTh1 0.559 60.057 0.581 80.012 4.527
ETTm1 4.972 56.954 5.041 60.097 14.664

Table 2: N-PADI for various models on the ETTh1 and ETTm1
datasets. Bold font denotes best results.

presented in Table 2, it is evident that the performance of
N-PADI is heavily influenced by its use of the L2 distance,
which significantly affects the accuracy of temporal capture.
TimeGrad faces challenges in grasping temporal correlations
within time series. Another diffusion-based model, TimeD-
iff, achieves better MSE performance compared to FreTS.
However, the noise-adding mechanism inherent to diffusion
models, combined with the extended forward step t, lim-
its its ability to capture temporal correlations, leading to
higher N-PADI values than FreTS. PatchTST, a transformer-
based model, also fails to learn additional temporal correla-
tions compared to FreTS, underscoring the limitation of trans-
formers in effectively retaining temporal correlations even
with positional embeddings. Conversely, TCDM, our non-
autoregressive diffusion model, incorporates the Maintain-
ing Temporal Correlation Module and the Redesigned Initial
Module, which significantly aid in preserving temporal cor-
relations, thereby improving predictive performance.

4.4 Hyperparameter Analysis
Truncated Timestamp
The experiment was conducted on the ETTh1 dataset. As
shown in Figure 5, when S = 2, the generator struggles to
learn effectively due to the limited number of diffusion steps,
resulting in poor performance. However, as S increases from
2 to 50, the additional diffusion steps enable the generator to
acquire more precise knowledge, significantly improving the
quality of the generated initial states. This suggests that at
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Figure 4: Visualization Cases: Predictive Results of TCDM, TimeDiff, and CSDI on the ETTm1 Dataset.

S = 50, the model is capable of producing fairly realistic
RS . Comparing S = 50 to S = 1000, S = 50 places the
model in a better initial state. Furthermore, when the diffu-
sion step exceeds 100, it becomes difficult to learn effective
knowledge, including temporal correlations, highlighting the
effectiveness of the Redesigned Initial Module.

Settings of Maintaining Temporal Correlation Module λi

From Figure 5, it is observed that on both datasets, as λi in-
creases, the MSE initially decreases and then increases, with
the minimum point reached at 0.3. This pattern may be at-
tributed to both ETTh1 and ETTm1 being excerpts from the
ETT dataset. As λi ranges from 0 to 0.3, the Temporal Co-
herent Noise Module gradually aids the model in better cap-
turing the relationships within the time series. Although the
relationships are artificially defined, they can guide the model
to autonomously learn the true event correlations. However,
when λi increases beyond 0.3, overfitting occurs. This is due
to the Temporal Coherent Noise Module excessively model-
ing the artificially designed temporal correlations, which im-
pedes the model’s ability to learn authentic correlations, re-
sulting in a decline in predictive performance.

4.5 Ablation Study
We maintain consistency with the hyperparameters of the
main experiment and conduct ablation studies to validate in-
dividual model effectiveness. We perform these module ab-
lation experiments in a multivariate setting on the ETTh1 and
Exchange datasets.

As shown in Table 3, ablation studies on the TCDM model
demonstrate that the full TCDM module consistently outper-
forms configurations with any single module removed across

2 6 10 50 1000
S

0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525

M
SE

MSE vs. S

ETTm1

(a) S varies

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
i

0.32

0.34

0.36

0.38

0.40

0.42

M
SE

MSE vs. i

ETTm1
ETTh1

(b) λi varies

Figure 5: Analysis of Hyperparameters: Noise Parameter λi and
Stop Step S.

Module ETTh1 Exchange

Full TCDM 0.396 0.160
w/o MTC Module 0.403 0.190
w/o Redesigned Initial Module 0.406 0.171
w/o Decomposition of Time Series 0.402 0.185

Table 3: MSE for ablation study. Bold font denotes best results.
MTC means Maintaining Temporal Correlation.

datasets, indicating a synergistic enhancement of overall per-
formance. Removing the Maintaining Temporal Correlation
Module led to significant declines in performance on the Ex-
change, underscoring its crucial role in predictive accuracy.
The Redesigned Initial Module proved especially effective on
ETTh1, enhancing prediction precision for dynamic patterns.
Although removing the Time Series Decomposition had a mi-
nor overall impact, it increased the error on the Exchange
dataset (from 0.160 to 0.185), highlighting its importance for
temporally coherent data. These findings emphasize the crit-
ical contributions of each module to achieving high accuracy
in multivariate time series forecasting.

5 Conclusion

In this study, we propose a novel decomposition-based pre-
diction framework to enhance the Temporal Correlation-
Empowered Diffusion Model, collectively referred to as
TCDM. The framework leverages time series decomposition
to integrate a base model with a diffusion model, enabling it
to effectively capture both long-term and short-term temporal
dependencies. The diffusion model is specifically designed to
preserve temporal correlations through two key components:
the Maintaining Temporal Correlation Module and the Re-
designed Initial Module. These components are developed
by addressing three critical aspects of diffusion models: noise
addition, initial state, and the sampling process. Experimen-
tal results demonstrate that each component contributes to
improved model performance, and TCDM significantly sur-
passes existing models, establishing it as a powerful and reli-
able solution for accurate time series prediction.
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