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Abstract
Open-world semi-supervised learning (OWSSL)
aims to recognize both known and unknown
classes, but the labeled samples only cover the
known classes. Existing OWSSL methods primar-
ily represent classes as symbolic variables, which
ignore the rich internal semantic information asso-
ciated with the classes and thus hampers their abil-
ity to recognize unknown classes. Recent studies
incorporate textual descriptions of classes to facil-
itate training, but these methods overlook the class
semantic correlations, which constrains their effec-
tiveness in recognizing unknown classes. To ad-
dress these issues, we propose a novel OWSSL
method. Our method fine-tunes only the image
encoder during training while keeping the text en-
coder frozen, thereby preserving the rich semantic
correlations learned during the pre-training phase.
Furthermore, we employ a semantic margin to ex-
tract class semantic correlations from textual de-
scriptions, which are then utilized in enhancing im-
age representation discriminability. Experimental
results across multiple datasets demonstrate that
our method significantly outperforms representa-
tive OWSSL methods in the recognition of both
known and unknown classes.

1 Introduction
In the field of machine learning [LeCun et al., 2015; Tu et
al., 2024] , traditional semi-supervised learning (SSL) frame-
works [Sohn et al., 2020] have provided an effective solution
for scenarios with limited labeled samples. However, these
frameworks typically operate under a strict assumption that
the labeled samples encompass all classes within the applica-
tion context. In real-world scenarios, especially in open en-
vironments where samples continuously arrive and unknown
classes emerge, this assumption often does not hold [Li et al.,
2021] . This challenge gives rise to the concept of open-world
semi-supervised learning (OWSSL) [Cao et al., 2022] , which
transcends the constraints of traditional SSL frameworks and
aligns more closely with the complexities of the real-world. It

∗Corresponding author

Figure 1: The environment faced by OWSSL. The model needs to
be able to effectively recognize both known and unknown classes
after training.

requires models to be capable of effectively recognizing both
known and unknown classes in unlabeled samples, even when
the labeled samples only cover the known classes. Figure 1
illustrates the scenario encountered by OWSSL.

OWSSL is currently receiving widespread attention with
a range of methods being proposed. For instance, ORCA
[Cao et al., 2022] introduces an adaptive margin mechanism
to mitigate the model bias towards known classes, OpenLDN
[Rizve et al., 2022] proposes a bi-level optimization rule
to generate relatively reliable pseudo-labels for unknown
classes, and PromptCAL [Zhang et al., 2023] proposes a two-
stage framework to tackle the class collision issue caused by
false negatives. The methods described above make signifi-
cant progress, but they generally face a common issue: they
primarily represent classes as symbolic variables. This repre-
sentation can only indicate a sample’s membership in a cer-
tain class and thus ignores the rich internal semantic informa-
tion associated with the classes. This simplification limits the
model to learning only the simple correspondence between
samples and class symbols, resulting in weakly discriminative
image representations, thereby impairing its ability to recog-
nize unknown classes.

To address these issues, recent studies assume knowledge

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of all class names and provide corresponding textual descrip-
tions to fine-tune both image and text encoders, aiming to
better understand the correspondence among visual features
of samples and textual descriptions of classes. CLIP-GCD
[Ouldnoughi et al., 2023] first introduces textual descrip-
tions and uses image-text contrastive loss to fine-tune the pre-
trained CLIP model [Radford et al., 2021]; TextGCD [Zheng
et al., 2024] then introduces a teacher model to mitigate the
image-text matching noise in CLIP-GCD and has become
the state-of-the-art in OWSSL. However, these methods do
not consider the class semantic correlations when aligning
the visual features of samples with their corresponding tex-
tual descriptions, resulting in insufficiently discriminative im-
age representations. Moreover, fine-tuning the text encoder
may disrupt the rich semantic correlations learned during pre-
training phase, potentially leading to overfitting to the pro-
vided textual descriptions [Shu et al., 2023]. Both of these
issues consequently affect the model’s ability in recognizing
unknown classes.

In light of the issues of existing methods, we propose a
novel OWSSL method. This method fine-tunes only the im-
age encoder during training while freezing the text encoder,
thereby preserving the rich semantic correlations learned dur-
ing the pre-training phase. Furthermore, our method employs
a semantic margin to extract class semantic correlations from
textual descriptions, which are then used in enhancing image
representation discriminability. Experimental results demon-
strate that our method achieves a significant performance im-
provement compared to representative OWSSL methods. The
main contributions of this paper are as follows:

• We identify the key issue in existing OWSSL methods
that utilize textual descriptions: they do not consider
the class semantic correlations when aligning the visual
features of samples with their corresponding textual de-
scriptions, resulting in insufficiently discriminative im-
age representations, thereby affecting their ability to rec-
ognize unknown classes.

• We propose a novel OWSSL method named CSC-
OWSSL, which freezes the text encoder, thereby pre-
serving the rich semantic correlations learned during the
pre-training phase and employs a semantic margin to
extract class semantic correlations from textual descrip-
tions, which are then used in enhancing image represen-
tation discriminability.

• We conduct comprehensive experiments on multi-
ple fine-grained datasets. The experimental results
demonstrate that our method achieves a significant
performance improvement compared to representative
OWSSL methods, fully illustrating the effectiveness of
our method.

2 Related Work
2.1 Open-World Machine Learning
Most machine learning methods operate under the closed-
world assumption, which frequently proves inadequate in
real-world scenarios. To address this, methods such as open-
set recognition (OSR) [Scheirer et al., 2013] , robust semi-

supervised learning (Robust SSL) [Oliver et al., 2018] , and
novel class discovery (NCD) [Han et al., 2019] have been
developed for open-world adaptation. OSR requires models
to recognize unseen classes during testing without compro-
mising known class accuracy. Robust SSL assumes that un-
labeled samples may contain classes not represented in the
labeled samples, and the goal is to minimize any negative im-
pact of unknown classes on the performance of known class
classification. NCD assumes that the unlabeled samples con-
sist solely of unknown classes, requiring the model to rec-
ognize these novel classes. Although these methods make
progress, they do not fully capture the complexity of open-
world scenarios. To effectively address open-world machine
learning challenges, OWSSL is proposed to better align with
real-world complexities.

2.2 Open-World Semi-Supervised Learning

[Cao et al., 2022] first proposes the concept of OWSSL,
which requires the model to recognize both known and un-
known classes simultaneously, thereby significantly enhanc-
ing the flexibility and generalization capabilities of SSL.
[Vaze et al., 2022] introduces the concept of Generalized Cat-
egory Discovery (GCD), which is similar to the concept of
OWSSL and is often discussed alongside it. Existing OWSSL
methods can primarily be categorized into two types: one
type represents classes as symbolic variables, with represen-
tative methods such as SimGCD [Wen et al., 2023] and GPC
[Zhao et al., 2023]; the other type incorporates textual de-
scriptions of classes, with representative methods such as
CLIP-GCD [Ouldnoughi et al., 2023] and TextGCD [Zheng
et al., 2024]. To broaden the application scope of these meth-
ods, some researchers extend them to various fields such as
point cloud segmentation [Riz et al., 2023] and intent classi-
fication [Shi et al., 2024; An et al., 2024] . Nevertheless, most
research still focuses on image classification tasks, as they are
crucial scenarios for testing the model’s generalization abil-
ity and its capability to handle unknown classes. Therefore, in
this paper, we choose to apply and validate the effectiveness
of our proposed methods on image classification tasks.

2.3 Vision-Language Models

In recent years, Visual-Language Models (VLMs) have made
significant advancements. These models are designed to pro-
cess and understand visual and textual information. The main
objective in this field is to train VLMs with a vast number of
image-text pairs, allowing them to capture the correlation be-
tween visual content and textual descriptions. These mod-
els exhibit exceptional performance across various visual-
language tasks [Zang et al., 2024]. Specifically, CLIP [Rad-
ford et al., 2021] attains impressive capabilities in under-
standing cross-modal concepts and correlations by aligning
image and text features in a shared latent space, after being
trained on extensive datasets. This robust generalization abil-
ity, along with the model’s capability to handle multi-modal
information, makes CLIP suitable for OWSSL scenarios, as
it can adapt to and manage a broad spectrum of visual and
textual inputs, which is essential for OWSSL methods.
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3 Proposed Method
In this section, we first describe the OWSSL setting. Subse-
quently, we introduce each part of our method. The overall
framework of our method is depicted in Figure 2 .

3.1 Problem Setting
Given a labeled dataset Dl containing n samples, Dl =
{(x1, y1) , (x2, y2) , · · · , (xn, yn)}, and an unlabeled dataset
Du containing m samples, Du = {xn+1, xn+2, · · · , xn+m},
it is usually assumed that m ≫ n. Here, x ∈ RD, y ∈ Cl,
where D represents the feature dimensions of the samples.
Cl denotes the set of classes in Dl and Cu denotes the set of
classes in Du, C = Cl ∪ Cu. In OWSSL, Cknown = Cl

represents the set of known classes and Cunknown = Cu\Cl

represents the set of unknown classes. Our goal is to learn a
classification model f to classify samples into known and un-
known classes. The model is trained on Dl and Du, and then
evaluated on Du. Knowing the number of unknown classes
is a fundamental assumption in most OWSSL methods.

In this paper, we utilize deep neural networks to build our
classification model f(x; θf ), which consists of an image en-
coder I(x; θI) : RD → Rd, a classifier h(I(x; θI); θh) :
Rd → R|C|, and a text encoder T (t; θT ) : RD → Rd. Here,
D denotes the feature dimension of x, d represents the feature
dimension following the processing by the image encoder,
and t represents the textual descriptions. The dataset is pro-
cessed in batches on the model, where B indexes all samples
in a given batch, Bl indexes all labeled samples within that
batch.

3.2 Baseline
We first establish a baseline model, which consist of the
cross-entropy loss for labeled samples and the self-distillation
loss [Assran et al., 2022] for all samples. These loss func-
tions are widely used in OWSSL methods [Cao et al., 2022;
Wen et al., 2023]. The cross-entropy loss on labeled samples
is as follows:

Lsup =
1

|Bl|
∑
i∈Bl

H
(
yi, σ

(
p
(
xi

)
, τs

))
, (1)

where H denotes the cross-entropy function, p
(
xi

)
=

h (I(x; θI); θh), σ(·) is the softmax function, and τs is a tem-
perature value. The self-distillation loss on all samples is as
follows:

Lunsup =
1

|B|
∑
i∈B

H
(
σ
(
p
(
x′
i

)
, τt

)
, σ

(
p
(
xi

)
, τs

))
−R

(
p
)
,

(2)
where τt is a temperature value. R

(
p
)

is a mean-entropy
maximization regularization term designed to prevent trivial
solutions during initial training processing [Cao et al., 2022],
and p = 1

2|B|
∑

i∈B σ
(
p
(
xi

)
, τs

)
+ σ

(
p
(
x′
i

)
, τs

)
is the mean

softmax probability of a batch. Finally, the baseline loss is as
follows:

Lbase = αLsup + (1− α)Lunsup, (3)
where α is a hyper-parameter, which is set to 0.35 by default.

However, Lbase represents classes as symbolic variables,
which can only indicate a sample’s membership in a certain

class and thus ignore the rich internal semantic information
associated with the classes. This simplification limits the
model to learning the simple correspondence between sam-
ples and class symbols, which hampers its ability to recognize
unknown classes. Therefore, we need to incorporate corre-
sponding textual descriptions of classes to facilitate training.

3.3 Semantic Margin Contrastive Loss
Recent OWSSL methods [Ouldnoughi et al., 2023; Zheng
et al., 2024] assume knowledge of all class names and pro-
vide corresponding textual descriptions to fine-tune both im-
age and text encoders, aiming to better understand the corre-
spondence among visual features of samples and textual de-
scriptions of classes. These methods fine-tune both image
and text encoders using the image-text contrastive loss, de-
noted as Litc, which is defined as follows:

Litc = − 1

|B|
∑
i∈B

log

exp

(
S(I(xi;θI),T(tyi ;θT ))

τk

)
|C|∑
k=1

exp
(

S(I(xi;θI),T (tk;θT ))
τk

) , (4)

where S is a similarity metric, specifically the cosine similar-
ity, τk denotes the temperature value, and t represents the tex-
tual descriptions generated by a large language model (LLM).
tyi

represents the textual description associated with the sam-
ple xi. It is retrieved by an auxiliary VLM from a knowledge
base that encompasses textual descriptions for all classes, and
it is the description that, after being processed by the text en-
coder, exhibits the highest similarity to xi as processed by
the image encoder. For more detailed information on the im-
plementation, please refer to TextGCD [Zheng et al., 2024].
Moreover, the class label yi corresponding to tyi

is also used
as supervisory information within Lbase to guide the training
process of the model. However, these methods only align the
visual features of samples with their corresponding textual
descriptions, yet treat all non-corresponding textual descrip-
tions equally, neglecting the class semantic correlations. Fur-
thermore, fine-tuning the text encoder may disrupt the rich
semantic correlations learned during pre-training phase, po-
tentially leading to overfitting to the provided textual descrip-
tions. Both of these issues consequently affect the model’s
generalization ability in recognizing unknown classes. To ad-
dress these issues, we take the following steps:

First, we fine-tune only the image encoder during training
while keeping the text encoder frozen. This approach pre-
serves the rich semantic correlations that were learned during
the pre-training phase. Furthermore, we employ a semantic
margin to extract class semantic correlations from these de-
scriptions [Shu et al., 2023] and incorporate them into the
image-text contrastive loss to fine-tune the image encoder,
thereby enhancing image representation discriminability. The
semantic margin is as follows:

Mi,j = 1− S (T (ti; θT ) , T (tj ; θT )) , (5)

where i, j ∈ {1, 2, · · · |C|}.
Based on the semantic margin, the semantic margin con-
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Figure 2: The proposed method framework. Our method fine-tunes only the image encoder during training while freezing the text encoder,
thereby preserving the rich semantic correlations learned during the pre-training phase. Additionally, our method employs a semantic margin
to extract class semantic correlations from textual descriptions, which are then used in enhancing image representation discriminability.

trastive loss is as follows:

Lsmc = − 1

|B|
∑
i∈B

log

exp

(
S(I(xi;θI),T(tyi ;θT ))

τk

)
|C|∑
k=1

exp
(

S(I(xi;θI),T (tk;θT ))+βMyi,k

τk

)
(6)

where β is a hyper-parameter, which is set to 0.3 by default.
Unlike Litc, which treats all non-corresponding textual de-
scriptions equally, Lsmc takes into account the class semantic
correlations. When the semantic similarity between classes
yi and k is small, indicating a distant semantic correlation,
the value of the semantic margin Myi,k is larger. This larger
margin effectively distances the image features of xi from the
non-corresponding textual descriptions associated with class
k. On the other hand, when the semantic similarity between
yi and k is significant, suggesting a closer semantic corre-
lation, the semantic margin Myi,k is reduced. This reduced
margin allows the image features to be closer to the textual

descriptions of classes that are semantically similar to yi,
thus enhancing the precision of distinguishing visual features
from non-corresponding textual descriptions and facilitating
the extraction of class semantic correlations.

Additionally, we refine the approach for obtaining textual
descriptions. In the existing OWSSL methods, textual de-
scriptions are typically acquired by querying the LLM di-
rectly, without sufficient consideration of the significance of
prompt templates. It is recognized that effective prompt tem-
plates can significantly enhance the quality of the LLM’s out-
put. Therefore, we incorporate the prompt templates pro-
posed in [Pratt et al., 2023] to enhance the quality of the tex-
tual descriptions generated by the LLM.

Finally, the overall loss function of our proposed method is
given as follows:

L = λ1Lbase + λ2Lsmc. (7)

During the testing phase, the classification model f(x; θf )
uses the classifier h(I(x; θI); θh) : Rd → R|C| to assign the
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Dataset
Labeled Unlabeled

# Image # Class # Image # Class

CUB 1.5K 100 4.5K 200
Stanford Cars 2.0K 98 6.1K 196
Flowers102 0.3K 51 0.8K 102

ImageNet-100 31.9K 50 95.3K 100

Table 1: Statistics of the fine-grained datasets.

corresponding class labels to each input sample xi ∈ Du,
thereby completing the classification of the samples.

4 Experiments
In this section, we conduct a comprehensive evaluation of
our method. The experimental results and detailed analysis
demonstrate the superiority of our method.

4.1 Experimental Setup
Datasets
We conduct experiments on five fine-grained datasets: CUB
[Wah et al., 2011] , Stanford Cars [Krause et al., 2013] ,
Flowers102 [Nilsback and Zisserman, 2008], and ImageNet-
100 [Deng et al., 2009], which contain 200, 196, 102, and
100 classes, respectively. To ensure the fairness of the exper-
iment, we conduct our experiments using the data partitioning
method described in [Zheng et al., 2024]. We adopt the same
approach to divide the classes into known and unknown, con-
sidering 50% of the classes as known and the remaining 50%
as unknown. Consequently, we construct the datasets Dl and
Du accordingly. We train our method on Dl and Du, and sub-
sequently evaluate its performance on Du. This procedure is
applied consistently across all compared methods. Detailed
dataset information is provided in Table 1 .

Compared Methods
For OWSSL methods represent classes as symbolic variables,
we select ORCA [Cao et al., 2022], GCD [Vaze et al., 2022],
SimGCD [Wen et al., 2023], GPC [Zhao et al., 2023], DCCL
[Pu et al., 2023], and PromptCAL [Zhang et al., 2023] as rep-
resentative methods. For OWSSL methods that incorporate
textual descriptions of classes, we choose CLIP-GCD [Ould-
noughi et al., 2023] and TextGCD [Zheng et al., 2024] as
representative methods. These selected methods collectively
showcase the latest advancements in the field of OWSSL.

Evaluation Protocol
Following the approach in [Cao et al., 2022], we evaluate
the performance of our method using accuracy (ACC) and
clustering accuracy (CACC). Specifically, ACC and CACC
are calculated on dataset Du, as illustrated in the following
equations:

ACC =
1

m

n+m∑
i=n+1

I (labeli = Resulti), (8)

CACC =
1

m

n+m∑
i=n+1

I (labeli = OP (Resulti)), (9)

where labeli represents the ground-truth class label of xi ∈
Du, which is provided only during the testing phase. OP
stands for optimal permutation, which aligns Resulti with
labeli. Our evaluation includes calculating ACC for samples
from known classes (K) in Du, as well as calculating CACC
for all samples (A) and samples from unknown classes (U) in
Du.

Implementation Details
We use a ViT-B/16 [Dosovitskiy et al., 2021] pre-trained with
CLIP as the backbone of the image and text encoder, setting
the output dimension of the backbone to 512. During training
process, we adjust only the last block of the image encoder
and freeze the text encoder. To ensure consistency with the
experimental setup of other comparison methods, we follow
the protocol described in TextGCD [Zheng et al., 2024]. We
use a batch size of 128 and train for 200 epochs with an ini-
tial learning rate of 0.1. We adjust the learning rate using
a cosine annealing schedule. The parameters are set as fol-
lows: α to 0.35, λ1 to 1, τs to 0.1, and τk to 0.01. τt is
initialized to 0.07 and gradually increased to 0.04 using a co-
sine annealing schedule during the first 30 epochs of training.
We choose GPT-3 [Brown et al., 2020] as our LLM and uti-
lize the prompt templates proposed by [Pratt et al., 2023] to
generate textual descriptions, and choose ViT-H based CLIP
model as the auxiliary VLM. To validate the generalization
capability of our method across different datasets, we pre-
train the model using [Vaze et al., 2022], uniformly setting
λ2 to 0.2 and β to 0.3. All our experiments are conducted on
a single NVIDIA 3090 GPU.

4.2 Main Results
The classification accuracy of different methods across var-
ious datasets is provided in Table 2. We report the aver-
age maximum classification accuracy from three runs for our
method, whereas the remaining results are obtained from
[Wen et al., 2023; Zheng et al., 2024]. The experimental re-
sults show that our method significantly outperforms previous
methods across various different datasets.

Compared to OWSSL methods that represent classes as
symbolic variables, which can only indicate a sample’s mem-
bership in a certain class and thus ignore the rich internal
semantic information associated with the classes, this sim-
plification causes the model to learn only a simple corre-
spondence between samples and class symbols, resulting in
weakly discriminative image representations, thereby limit-
ing its ability to recognize unknown classes. Our method in-
corporates textual descriptions and aims to better understand
the correspondence between the visual features of samples
and the textual descriptions of classes. As a result, it outper-
forms methods that rely solely on symbolic variable represen-
tations.

Compared to OWSSL methods that incorporate textual de-
scriptions of classes, these methods do not consider the class
semantic correlations when aligning the visual features of
samples with their corresponding textual descriptions, re-
sulting in insufficiently discriminative image representations.
Moreover, fine-tuning the text encoder may disrupt the rich
semantic correlations learned during pre-training phase, po-
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Methods Pretrain CUB Stanford Cars Flowers102 ImageNet-100
A K U A K U A K U A K U

ORCA DINO 35.5 45.6 30.2 23.5 50.1 10.7 - - - 73.5 92.6 63.9
GCD DINO 51.3 56.6 48.7 39.0 57.6 29.9 74.4 74.9 74.1 74.1 89.8 66.3

SimGCD DINO 60.3 65.6 57.7 53.8 71.9 45.0 71.3 80.9 66.5 83.0 93.1 77.9
GPC DINO 55.4 58.2 53.1 42.8 59.2 32.8 - - - 76.9 94.3 71.0

DCCL DINO 63.5 60.8 64.9 43.1 55.7 36.2 - - - 80.5 90.5 76.2
PromptCAL DINO 62.9 64.4 62.1 50.2 70.1 40.6 - - - 83.1 92.7 78.3

GCD CLIP 57.6 65.2 53.8 65.1 75.9 59.8 74.1 82.4 70.1 - - -
SimGCD CLIP 62.0 76.8 54.6 75.9 81.4 73.1 75.3 87.8 69.0 86.1 94.5 81.9

CLIP-GCD CLIP 62.8 77.1 55.7 70.6 88.2 62.2 76.3 88.6 70.2 84.0 95.5 78.2
TextGCD CLIP 76.6 80.6 74.7 86.9 87.4 86.7 87.2 90.7 85.4 88.0 92.4 85.2

CSC-OWSSL CLIP 81.6 83.0 80.8 93.0 95.3 91.8 88.5 94.7 86.5 92.2 94.7 90.9

Table 2: Classification accuracy (%) of compared methods on all, known, and unknown classes. Bold font indicates the best classification
accuracy achieved on the corresponding dataset. A, K, and U denote model performance on all, known, and unknown classes, respectively.

Figure 3: Ablation study on each component of the loss function on
the different datasets.

tentially leading to overfitting to the provided textual descrip-
tions. Both of these issues consequently affect the model’s
ability in recognizing unknown classes. In contrast, our
method fine-tunes only the image encoder while keeping the
text encoder frozen, thereby maintaining the semantic cor-
relations established during pre-training. Additionally, we
introduce a semantic margin contrastive loss to utilize class
semantic correlations from textual descriptions. These com-
bined strategies address the issues of the aforementioned
methods and, as evidenced by our experimental results, sig-
nificantly enhance performance.

4.3 Analyses and Discussions
Ablation Experiments
We conduct ablation studies on each component of the loss
function. The results indicate that each component of the loss
function contributes to the final performance. The specific
results are presented in Figure 3.

Analysis of the Effect on Semantic Margin Contrastive
Loss
To fully leverage the class semantic correlations, we freeze
the text encoder to preserve the rich semantic correlations

Figure 4: Performance comparison between the basic method and
CSC-OWSSL.

learned during the pre-training phase and employ a seman-
tic margin to extract class semantic correlations from textual
descriptions. This strategy allows us to utilize the class se-
mantic correlations from textual descriptions, thereby effec-
tively enhancing image representation discriminability and
the model’s ability to recognize unknown classes. To demon-
strate the effectiveness of our strategy, we conduct experi-
ments comparing a basic method that uses the loss function
Lbase+Litc and fine-tunes the text encoder (which essentially
is TextGCD [Zheng et al., 2024]) with our method, which em-
ploys Lbase + Lsmc. The experimental results, presented in
Figure 4, show that our strategy significantly outperforms the
basic method.

Analysis of the Sensitivity of Hyper-Parameters

We introduce an additional hyper-parameter β into the Lsmc,
while all other hyper-parameters remain consistent with the
references and are maintained at the same values across all
experiments, as detailed in the experimental section. Sensi-
tivity analyses for β are presented in Figure 5. These analyses
demonstrate that the performance of our method is robust to
the choice of the hyper-parameter β.
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Figure 5: Performance of CSC-OWSSL with different values of
hyper-parameters.

Analysis of the Performance Improvement of Semantic
Margin for OWSSL Frameworks
In the field of OWSSL, several frameworks are incorpo-
rated within the existing methods. For instance, GCD
[Vaze et al., 2022] constructs a discriminative representa-
tion space through semi-supervised contrastive learning, and
SimGCD [Wen et al., 2023] enhances performance via a self-
distillation strategy. Most subsequent methods are improve-
ments based on these two frameworks [Zhao et al., 2023;
Pu et al., 2023; Zhang et al., 2023]. However, these frame-
works commonly simplify classes into symbolic variables,
which can determine the classification of samples but ig-
nore the rich semantic information of the classes. Therefore,
TextGCD [Zheng et al., 2024] attempts to address this is-
sue by incorporating textual information and employing an
image-text contrastive loss to align visual features with tex-
tual descriptions. As a result, it is considered an OWSSL
framework. Nevertheless, it still fails to consider the class
semantic correlations. Our method keeps the text encoder
frozen, thus preserving the rich semantic correlations learned
during the pre-training phase, and introduces a semantic mar-
gin contrastive loss to utilize class semantic correlations from
textual descriptions. These combined strategies maintain the
semantic correlations established during pre-training and col-
lectively address the issues of these frameworks. Across mul-
tiple experimental metrics, our method demonstrates perfor-
mance that surpasses the current frameworks, with the com-
parative experimental results detailed in Figure 6 .

Analysis of Performance in More Realistic Scenarios
Existing OWSSL methods that utilize textual descriptions
typically assume that the names of all classes are pre-known.
However, this assumption often does not hold in real-world
scenarios, as in practical applications, we usually only have
access to information about a subset of classes. To address
this shortcoming, in this section, we investigate a scenario
that is closer to reality: validating the performance of our pro-
posed method using only the textual descriptions of known
classes. Furthermore, we do not employ any auxiliary VLMs,
which might not be available or practical in real-world set-
tings. All other conditions remain the same. This allows us
to more accurately evaluate the generalization capability of
our method when dealing with real-world problems. The rel-

Figure 6: Performance improvement of semantic margin for
OWSSL frameworks.

Figure 7: Performance of CSC-OWSSL with textual description of
known classes.

evant experimental results are presented in Figure 7. The re-
sults show that even when using only the textual descriptions
of known classes, our method still demonstrates competitive
performance compared to OWSSL methods that use textual
descriptions for all classes.

5 Conclusion
In this paper, we propose a novel OWSSL method. This
method fine-tunes only the image encoder during training
while keeping the text encoder frozen, thereby preserv-
ing the rich semantic correlations learned during the pre-
training phase. Furthermore, our method introduces a se-
mantic margin to extract class semantic correlations from
textual descriptions. These semantic correlations are then
utilized to enhance the discriminability of image represen-
tations. By focusing on these aspects, our method signifi-
cantly improves model performance compared to representa-
tive OWSSL methods. Future research aims to explore and
address the challenges posed by the continuous emergence of
unknown classes, a scenario commonly encountered in prac-
tical applications, while investigating the capabilities of our
method in such environments.
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