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Abstract
Existing image reflection removal methods struggle
to handle complex reflections. Accurate language
descriptions can help the model understand the im-
age content to remove complex reflections. How-
ever, due to blurred and distorted interferences in
reflected images, machine-generated language de-
scriptions of the image content are often inaccurate,
which harms the performance of language-guided
reflection removal. To address this, we propose the
Adaptive Language-Aware Network (ALANet) to
remove reflections even with inaccurate language
inputs. Specifically, ALANet integrates both filter-
ing and optimization strategies. The filtering strat-
egy reduces the negative effects of language while
preserving its benefits, whereas the optimization
strategy enhances the alignment between language
and visual features. ALANet also utilizes language
cues to decouple specific layer content from fea-
ture maps, improving its ability to handle complex
reflections. To evaluate the model’s performance
under complex reflections and varying levels of lan-
guage accuracy, we introduce the Complex Reflec-
tion and Language Accuracy Variance (CRLAV)
dataset. Experimental results demonstrate that
ALANet surpasses state-of-the-art methods for im-
age reflection removal. The code and dataset are
available at https://github.com/fashyon/ALANet.

1 Introduction
When capturing images through glass, reflections diminish
image quality by obscuring details and distorting colors,
thereby impairing the image’s usability and hindering down-
stream computer vision tasks [Xie et al., 2021; Zhang et al.,
2023]. The widely used reflection model [Wan et al., 2018;
Yang et al., 2018] considers the reflected image I as a linear
combination of the transmission layer T and the reflection
layer R, where T represents the content transmitted through
the glass, and R represents the reflected content.

To obtain a clear T from I , multi-image reflection removal
methods [Li and Brown, 2013; Liu et al., 2020] leverage

∗Corresponding author.

(a) Input (b) No language (c) Incorrect

(d) Confused (e) Incomplete (f) Accurate

Figure 1: The impact of language-guided reflection removal with
different types of language inputs. Inaccurate language inputs result
in worse outcomes than having no language. The specific language
inputs for each subfigure are provided in the supplementary material.

the distinct motions between T and R from different view-
points to distinguish them. However, these methods rely
on controlled environments and multi-angle observations,
limiting their applicability in real-world scenarios. Earlier
single-image reflection removal methods [Levin et al., 2004;
Chung et al., 2009; Shih et al., 2015] primarily rely on
handcrafted priors, but are only suitable for simple reflec-
tion scenarios. With the rise of deep learning, many meth-
ods [Zhang et al., 2018; Wei et al., 2019; Li et al., 2020;
Hu and Guo, 2023] use neural networks to model the different
layers in reflected images. However, these methods struggle
to remove complex reflections due to the limited information
available in a single image.

Language has shown great effectiveness in various visual
tasks [Radford et al., 2021; Li et al., 2022; Wang et al.,
2022]. Language descriptions can provide additional infor-
mation about objects within a scene, enhancing the under-
standing and processing capabilities of networks. For ex-
ample, with complex reflections in an image, language de-
scriptions can indicate which areas belong to the reflection
layer and which belong to the transmission layer. Zhong et al.
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[Zhong et al., 2024] introduced language into the image re-
flection removal field to provide contextual clues, which facil-
itate the separation of different layers. However, this method
requires that the language descriptions accurately match the
image content; mismatches can harm performance, as illus-
trated in Figure 1. The L-DiffER [Hong et al., 2025] em-
ployed a language-based diffusion model to remove reflec-
tions, but does not account for cases where the language de-
scriptions are inaccurate. Since manually annotating images
is time-consuming and labor-intensive, the most convenient
approach is to use language models to automatically gener-
ate descriptions. However, reflections interfere with the lan-
guage model’s ability to understand the image content. For
example, on the reflection removal datasets Nature, Real,
and SIR2, using BLIP [Li et al., 2022] to generate captions
for reflected images versus reflection-free images, the aver-
age BLEU, METEOR, CIDEr, and ROUGE-L scores drop
by 50.95%, 34.11%, 55.07%, and 31.45%, respectively, indi-
cating that reflections mislead the language model into gen-
erating inaccurate descriptions. These inaccuracies fall into
three categories: (1) Incorrect: Describing non-existent con-
tent in the image, misleading the model to process fictitious
elements and adversely affecting its handling of actual con-
tent. (2) Confused: Mixing up of parts of the transmission
and reflection layers, preventing the model from distinguish-
ing the features of each layer. (3) Incomplete: Omitting de-
tails, especially those obscured by reflections, which prevents
the model from focusing on the critical areas that need pro-
cessing.

To mitigate the negative impact of inaccurate language
descriptions on the performance of image reflection re-
moval, we propose the Adaptive Language-Aware Network
(ALANet) through two well-designed strategies: filtering and
optimization. The filtering strategy aims to filter out the nega-
tive effects of inaccurate language while retaining its positive
effects. For this, we propose the Language-Aware Compe-
tition Attention Module (LCAM), which enables language-
guided attention and visually-driven attention to compete
with each other, dynamically adjusting their influence. The
optimization strategy seeks to refine language features so they
can align with the content of the corresponding layers. For
this, we propose the Adaptive Language Calibration Module
(ALCM), which uses visual features to fine-tune language
features. Furthermore, to effectively utilize language fea-
tures for separating specific information from images, we de-
sign the Language-Guided Spatial-Channel Cross Attention
(LSCA) mechanism. This mechanism adjusts the spatial and
channel structures of the feature map by language, accurately
extracting different layers from intertwined scenes.

To evaluate model performance under complex reflections
and varying levels of language accuracy, we introduce the
real-world Complex Reflection and Language Accuracy Vari-
ance (CRLAV) dataset. This dataset includes multiple types
of complex reflections, with each image paired with language
descriptions of varying accuracies. It not only allows for as-
sessing a model’s ability to remove complex reflections, but
it also evaluates the model’s robustness under conditions of
varying language accuracy guidance.

In summary, the main contributions are as follows:

• We propose ALANet to improve the model’s reflection
removal performance with inaccurate language descrip-
tions through filtering and optimization strategies.

• We introduce the real-world CRLAV dataset to evalu-
ate the performance of models under complex reflections
and varying levels of language accuracy.

• Experiments demonstrate that the proposed ALANet
surpasses state-of-the-art (SOTA) methods and achieves
solid performance even with inaccurate language inputs.

2 Related Work
2.1 Image Reflection Removal
The existing methods for reflection removal can be di-
vided into multi-image-based and single-image-based meth-
ods. While multi-image-based methods leverage information
from multiple images to remove reflections, their applicabil-
ity is limited by data acquisition constraints. This paper fo-
cuses on the more broadly applicable single-image reflection
removal. Early single-image reflection removal methods pri-
marily relied on priors such as gradient sparsity [Levin et al.,
2004; Levin and Weiss, 2007], layer smoothness [Chung et
al., 2009; Yan et al., 2014], and ghosting cues [Shih et al.,
2015]. However, these methods often perform poorly in real-
world scenes due to their heavy dependence on prior assump-
tions.

With the rise of deep learning, CEILNet [Fan et al., 2017]
was the first to apply deep learning to the task of single-image
reflection removal, using edge features as auxiliary informa-
tion to eliminate reflections. Zhu et al. [Zhu et al., 2024]
designed the max-min reflection filter to characterize the re-
flection locations in paired images. However, these methods
often face bottlenecks in complex scenes due to the lack of
additional information. Given that language conveys human
prior knowledge about the real world [Deng et al., 2023],
Zhong et al. [Zhong et al., 2024] facilitated layer separation
by establishing correspondences between language descrip-
tions and image layers. However, when the language descrip-
tions do not accurately match the corresponding layer con-
tent, they can have negative effects. L-DiffER [Hong et al.,
2025] used language as a condition for the diffusion model to
remove reflections, but it did not consider the harm caused by
inaccurate language descriptions. To address this issue, we
propose the ALANet to reduce the negative impact of inaccu-
rate language descriptions on reflection removal.

2.2 Applications of Language in Image Processing
The ability of CLIP [Radford et al., 2021] to understand lan-
guage and interpret images has been leveraged in various
tasks. BLIP [Li et al., 2022] proposed using bootstrapping
to synthesize captions, obtaining higher quality data. CLIP-
LIT [Liang et al., 2023] learned initial prompt pairs by con-
straining the text-image similarity between prompts and cor-
responding images in the CLIP latent space. NeRCo [Yang
et al., 2023] employed the priors of a pre-trained vision-
language model to provide perceptually guided instruction
for learning lighting conditions. DA-CLIP [Luo et al., 2023]
predicted the degraded embeddings of low-quality images
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Figure 2: Overview of the proposed ALANet, which comprises various modules that use language adaptively to remove reflections. T and R
represent the transmission and reflection layers, respectively.

through a controller, and directed the CLIP image encoder
to output high-quality content embeddings. Zhong et al.
[Zhong et al., 2024] introduced language descriptions to pro-
vide layer content for addressing the ill-posed problem of re-
flection separation. However, since images with reflections
are difficult to be accurately described by language models,
how to separate specific image layers under imperfect lan-
guage conditions remains an unresolved challenge.

3 Proposed Method
3.1 Adaptive Language-Aware Network
The Adaptive Language-Aware Network (ALANet) consists
of the Language-Aware Separation Branch (LSBranch), the
Perception Decoupling Branch (PDBranch), and the Lan-
guage Feature Extraction Branch (LEBranch), as shown in
Figure 2. The LEBranch is responsible for encoding the in-
put language, and adjusting the channel dimensions to fit the
network structure. The PDBranch uses a pre-trained Visual
Geometry Group (VGG) model [Simonyan and Zisserman,
2014] to extract high-level visual features. It then decouples
the corresponding features through language to facilitate the
separation process in the LSBranch. In the LSBranch, the
Language-Aware Separation Block (LASB) adjusts the influ-
ence of language-guided attention according to the accuracy
of the language description, thereby preventing issues of mis-
guidance caused by inaccurate language.

The structure of the LASB is shown in Figure 3. Its
purpose is to use semantic information from language that
matches with the visual content, guiding the separation of the
transmission and reflection layers. The LASB primarily em-
ploys the LCAM and the Multi-Receptive Field Decoupling
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Figure 3: Structure of the LASB. As the core of LASB, LCAM
utilizes language features from different layers to facilitate the sep-
aration of those layers.

Module (MFDM) to separate the different layers. Details of
MFDM are provided in the supplementary material.

3.2 Language-Aware Competition Attention
Module

The Language-Aware Competition Attention Module
(LCAM) is shown in Figure 4. It competitively adjusts the
weight distribution of language-guided attention and channel
attention, based on the matching degree between language
cues and the visual content, aiming to retain the positive
effects of accurate language while suppressing the negative
effects of inaccurate language. Given the image features
FI ∈ RC×H×W and language features FL ∈ R1×C , where
H and W are the height and width of the image, and C is the
number of channels. FI and FL both undergo processing and
through matrix multiplication, the language-image similarity
matrix ML ∈ RC×C is obtained. Each element (i, j) in
ML represents the similarity between the i-th channel of
language features and the j-th channel of image features.
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Figure 4: Structure of the LCAM. The dashed lines indicate the sce-
nario without language input.

Subsequently, ML is average-pooled along the language
dimension to obtain the language-image similarity scores
SL ∈ R1×C , where each element indicates the similarity
of each image channel to the overall language information.
After passing through a sigmoid function, the adjustment
vector σS is used to modify the weight of language-guided
attention, and its complement 1 − σS is used to adjust
the weight of channel attention. The channel attention
differentiates between the two layers by considering their
physical characteristics, specifically the structural continuity
in the transmission layer and the specular sparsity in the
reflection layer, thereby complementing language-guided
attention from a visual perspective.

3.3 Adaptive Language Calibration Module
The Adaptive Language Calibration Module (ALCM), as
shown in Figure 5, adjusts and optimizes language features
by leveraging visual features to enhance the consistency be-
tween language and visual content. In the ALCM, image fea-
tures FI and language features FL are processed and then
concatenated. Subsequently, they pass through a linear layer
and a sigmoid function to generate an adjustment vector
σc ∈ R1×C , which dynamically controls the fusion ratio of
language and image features. In this process, the linear layer
acts as a mediator for feature fusion, optimizing the combi-
nation points between the two types of information.

3.4 Language-Guided Spatial-Channel Cross
Transformer

The Language-Guided Spatial-Channel Cross Transformer
(LSCT), as shown in Figure 6, features the Language-Guided
Spatial-Channel Cross Attention (LSCA) as its core. The
LSCA utilizes the semantic information from language to in-
teract with the spatial and channel dimensions of the feature
map, leveraging language-driven attention mechanisms to de-
couple specific information. As illustrated, the LSCA first
applies spatial and channel pooling to the input image fea-
tures FI , obtaining FS ∈ R1×C and FC ∈ RHW×1, where
HW = H ×W . The language features FL interact with FS
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Figure 5: Structure of the ALCM. The ALCM enhances the consis-
tency between language features and visual content.
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Figure 6: Structure of the LSCT and its core component, LSCA. The
dashed lines in LSCA indicate the scenario without language input.

to generate MSL ∈ RC×C . Each element (i, j) in MSL rep-
resents the correlation between the i-th channel of the image
features and the j-th channel of the language features, indi-
cating a global language-image interaction effect. Simultane-
ously, the language features FL interact with FC to produce
MLC ∈ RHW×C . Each element (h, c) in MLC indicates
the correlation between the h-th spatial position of the image
and the c-th channel of the language features, reflecting the
relevance of the language description to specific local regions
in the image. Finally, both MLC and MSL undergo soft-
max and are multiplied to obtain MLCSL ∈ RHW×C . This
matrix combines global language guidance with local image
features, enhancing the model’s ability to interpret language
descriptions, and focus on specific regions of the image that
correspond to these descriptions.

4 Complex Reflection and Language
Accuracy Variance Dataset

To evaluate the model’s performance under complex reflec-
tions and varying levels of language accuracy, we propose
the Complex Reflection and Language Accuracy Variance
(CRLAV) dataset. The dataset encompasses real-world in-
door and outdoor scenes, comprising a total of 600 image
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Methods Nature (20) Real (20) Wild (55) Postcard (199) Solid (200) Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BDN (ECCV’18) 18.83 0.737 18.68 0.728 22.02 0.822 20.54 0.857 22.68 0.856 20.55 0.800
ERRNet (CVPR’19) 20.39 0.766 22.28 0.796 25.14 0.873 21.53 0.877 23.55 0.880 22.58 0.838
IBCLN (CVPR’20) 23.78 0.784 21.59 0.764 24.46 0.885 22.95 0.875 24.74 0.893 23.50 0.840
LANet (ICCV’21) 23.55 0.811 22.51 0.815 26.06 0.900 24.14 0.907 24.30 0.898 24.11 0.866
YTMT (NIPS’21) 24.08 0.814 22.68 0.798 25.24 0.888 21.86 0.880 23.79 0.887 23.53 0.853
DMGN (TIP’21) 20.63 0.764 20.28 0.763 21.34 0.774 22.65 0.879 23.27 0.872 21.63 0.810

DSRNet (ICCV’23) 24.84 0.823 22.09 0.790 26.00 0.902 20.05 0.883 23.96 0.887 23.39 0.857
RDRNet (CVPR’24) 25.33 0.835 22.76 0.804 26.97 0.905 22.11 0.881 24.42 0.892 24.32 0.863

ALANet (Ours) 25.56 0.829 23.89 0.812 25.93 0.900 23.47 0.897 24.85 0.900 24.74 0.868

Table 1: Quantitative comparison with SOTA methods on public datasets. Bold and underline indicate top 1st and 2nd rank, respectively.

(a) Input (b) Description (c) BDN

T :  " A neatly trimmed 
bush stands in a grassy 
area near a modern 
building."

R: "Some reflections." 

(d) ERRNet (e) IBCLN (f) LANet

(g) YTMT (h) DMGN (i) DSRNet (j) RDRNet (k) ALANet (Ours) (l) Ground truth

T: "A bicycle with a 
helmet and a table with 
chairs are indoors."

R: "A silver pillar is in 
front of the building 
with windows."

Figure 7: Qualitative comparison with SOTA methods on the CRLAV dataset (top) and the Real dataset (bottom). ALANet excels in
identifying and removing reflections in complex environments. T and R represent the transmission and reflection layers, respectively.

pairs. Using a tripod-mounted smartphone, we capture im-
ages with reflection artifacts by placing glass and acrylic
sheets of varying thicknesses as obstructions. Ground truth
images without reflections are obtained by removing these
obstructions. To achieve the three key characteristics of com-
plex reflections—high intensity, large coverage, and indistin-
guishability—we employ several strategies during data col-
lection. By adjusting the tilt angles of the obstructions, we
control the area and intensity of the reflections, allowing them
to cover larger regions and increase the overlap between the
reflected light and the transmission layer content, thereby cre-
ating high-intensity and large-area reflection artifacts. Addi-
tionally, we select complex scenes with rich textures or mul-
tiple objects to enhance the confusion and complexity of the
reflected content, making it more challenging to distinguish
from the actual transmission content.

To assess model performance under language conditions
of varying accuracy, each image is annotated with both ac-
curate and inaccurate language descriptions. Inaccurate de-

scriptions are categorized into three types: incorrect, con-
fused, and incomplete. Each type is further divided into four
levels—slightly, moderately, severely, and entirely inaccu-
rate—corresponding to adjustments of 25%, 50%, 75%, and
100% of the label content, respectively. This setup simulates
the impact of language errors on reflection removal models.

5 Experiments
5.1 Implementation Details
To balance performance and parameter count, the channel
numbers from level 0 to level 4 of the network are set to
C0, C1, C2, C3, C4 = [64, 128, 128, 160, 160], and the num-
ber of LASBs at each level (N0 to N4) is set to 2. The ini-
tial learning rate is 10−4, with a batch size of 1, a patch size
of 224×224, and random flipping applied for data augmen-
tation. The model is trained for 70 epochs using the Adam
optimizer [Kingma and Ba, 2014] with a single RTX 3080 Ti
GPU. The learning rate decreases to 10−5 at 50 epochs.
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Methods CRLAV (600) Param FLOPs
PSNR SSIM (M) (G)

BDN (ECCV’18) 17.46 0.686 75.16 12.70
ERRNet (CVPR’19) 18.93 0.702 18.95 116.72
IBCLN (CVPR’20) 18.81 0.701 21.61 98.16
LANet (ICCV’21) 19.28 0.709 10.93 83.81
YTMT (NIPS’21) 18.92 0.697 76.90 110.98
DMGN (TIP’21) 18.49 0.698 45.49 116.85

DSRNet (ICCV’23) 18.58 0.693 9.87 32.34
RDRNet (CVPR’24) 19.51 0.706 29.09 5.14

ALANet (Ours) 19.68 0.719 8.69 32.92

Table 2: Quantitative comparison with SOTA methods on the
CRLAV dataset, including parameters and FLOPs (computed for a
128×128 RGB image).

5.2 Dataset and Evaluation Metrics
We employ both synthetic and real-world images to train our
model. For synthetic images, we generate data using the pop-
ular image captioning dataset Flickr8k [Hodosh et al., 2013],
which contains 8,091 images, each with five different lan-
guage descriptions. We randomly select images from the
Flickr8k dataset to serve as the transmission and reflection
layers. These are combined through linear blending [Zhang
et al., 2018] to generate synthetic images. For the real-world
training data, following prior works [Zhong et al., 2024;
Hu and Guo, 2023; Zhu et al., 2023], we train our model us-
ing 200 image pairs from the Nature dataset [Li et al., 2020]
and 90 image pairs from the Real dataset [Zhang et al., 2018].

We use the remaining images from the Nature and Real
datasets, along with the three subsets—Wild, Postcard, and
Solid—from the SIR2 dataset [Wan et al., 2017] as public
test sets. The CRLAV dataset is also included as a test set.
Following prior works [Wei et al., 2019; Hu and Guo, 2021],
to prevent memory overload, we resize the images in the Real
test set by setting the shorter side length to 420 while preserv-
ing the original aspect ratio. We use the commonly employed
peak signal-to-noise ratio (PSNR) [Huynh-Thu and Ghanbari,
2008] and structural similarity index measure (SSIM) [Wang
et al., 2004] as evaluation metrics, which are calculated in the
RGB color space. Higher values indicate better performance.

5.3 Comparison Results
To assess the performance of the proposed ALANet, we com-
pared it with eight SOTA methods: BDN [Yang et al., 2018],
ERRNet [Wei et al., 2019], IBCLN [Li et al., 2020], LANet
[Dong et al., 2021], YTMT [Hu and Guo, 2021], DMGN
[Feng et al., 2021], DSRNet [Hu and Guo, 2023], and RDR-
Net [Zhu et al., 2024]. To ensure a fair comparison, for meth-
ods with publicly available training code, we fine-tuned their
models on our training datasets and selected the version that
performed best. Quantitative comparison results across pub-
lic datasets are shown in Table 1. It can be observed that
our ALANet achieves the best or second-best results across
multiple datasets, ultimately delivering the best average per-
formance. This demonstrates ALANet’s advantage in image
reflection removal, confirming its effectiveness and reliability
in various reflection scenarios.

To compare the capability of removing complex reflec-
tions, Table 2 presents a quantitative comparison between

Language type for training Language type for testing Average
Correct Random None Correct Random None PSNR SSIM

✓ × × ✓ × × 24.74 0.868
✓ × × × ✓ × 24.09 0.861
✓ × × × × ✓ 24.02 0.856
× ✓ × ✓ × × 24.27 0.864
× ✓ × × ✓ × 24.11 0.860
× ✓ × × × ✓ 23.83 0.852
× × ✓ × × ✓ 24.02 0.857

Table 3: Ablation experiments for different types of language inputs
during training and testing on public datasets.

(a) Input (b) No language (c) Incorrect

(d) Confused (e) Incomplete (f) Accurate

Figure 8: Visual effects of our ALANet with different types of lan-
guage inputs. The specific language inputs for each subfigure are
provided in the supplementary material.

ALANet and other methods on the CRLAV dataset, where
ALANet achieves the best performance. Table 2 also shows
the parameter count and floating point operations (FLOPs),
demonstrating that ALANet maintains a relatively balanced
parameter count and FLOPs compared to SOTA methods.

Figure 7 presents a qualitative comparison of ALANet with
SOTA methods across various scenes. In the complex outdoor
scenario from the CRLAV dataset, only ALANet achieves the
most thorough removal of reflections. In the complex indoor
scene from the Real dataset, although ERRNet, DSRNet, and
RDRNet can remove reflections from the silver column, they
fail to eliminate reflections from the light. Only ALANet suc-
cessfully removes reflections from both the light and the sil-
ver column. This demonstrates that ALANet is more effective
at removing complex reflections compared to other methods.

5.4 Ablation Studies
In this section, we delve into the impact of different compo-
nents of ALANet by conducting various ablation studies.

Impact of language input. To explore the impact of lan-
guage and its accuracy on model performance, we conducted
experiments using different types of language inputs during
the training and testing phases, with the results shown in Ta-
ble 3. It can be observed that when correct language is used
for training, the performance progressively decreases when
tested with correct, random, and no language inputs, indi-
cating that correct language input is most beneficial for en-
hancing model performance. Simultaneously, even with the
lower accuracy caused by random language inputs, benefit-
ing from our filtering and optimization strategies, the perfor-
mance with random language remains better than with no lan-
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Degree Incorrect Confused Incomplete
PSNR SSIM PSNR SSIM PSNR SSIM

Public
datasets

(494)

Slightly (25%) 24.55 0.865 24.48 0.866 24.36 0.864
Moderately (50%) 24.35 0.862 24.29 0.861 24.22 0.861

Severely (75%) 24.08 0.859 24.01 0.859 24.03 0.857
Entirely (100%) 22.70 0.838 24.01 0.854 24.02 0.856

CRLAV
(600)

Slightly (25%) 19.43 0.713 19.65 0.714 19.52 0.718
Moderately (50%) 19.25 0.707 19.59 0.712 19.33 0.716

Severely (75%) 19.23 0.705 19.51 0.711 19.24 0.714
Entirely (100%) 19.06 0.703 19.41 0.708 19.13 0.697

Table 4: Ablation experiments on the effects of varying degrees of
language inaccuracy.

ALCM LSCT
LCAM Average Param

(M)
FLOPs

(G)Language-guided Channel PSNR SSIMattention attention
✓ ✓ ✓ ✓ 24.74 0.868 8.69 32.92
✓ ✓ ✓ × 24.52 0.865 8.46 32.91
✓ ✓ × ✓ 24.05 0.859 8.24 32.92
✓ ✓ × × 24.11 0.858 8.01 32.90
× ✓ ✓ ✓ 24.41 0.867 8.51 32.92
× × ✓ ✓ 24.19 0.863 8.20 32.89

Table 5: Ablation experiments for different modules on public
datasets. FLOPs for a 128x128 RGB image.

guage input. When training with random language, testing
with both correct and random language still achieved com-
mendable performance, surpassing that of RDRNet and DSR-
Net respectively on the SSIM metric. This demonstrates that
random language during training did not mislead the model
into confusion, showing that the model can still perform well
even under conditions of low language accuracy.

Figure 8 illustrates the visual effects of our ALANet in
removing complex reflections with three types of inaccurate
descriptions: incorrect, confused, and incomplete. It can be
seen that ALANet can utilize the portions of inaccurate lan-
guage inputs that match the semantics of the corresponding
layers, resulting in de-reflection outcomes that are superior to
those without any language inputs.

Table 4 illustrates the performance of our ALANet under
varying degrees of language accuracy. It can be observed that
the model’s performance decreases as the degree of accuracy
declines on both public datasets and the CRLAV dataset. No-
tably, even with severely incorrect, confused, or incomplete
input, the model’s performance remains superior to that with
no language input. This demonstrates ALANet’s robustness
to severely inaccurate language.

Ablation study on LCAM. Table 5 illustrates the contri-
butions of language-guided attention and channel attention to
performance within LCAM. It can be observed that the exper-
iments combining both types of attention achieved the best
performance, demonstrating the effectiveness of LCAM’s
competitive attention mechanism. Figure 9 further shows the
feature maps within LCAM and the corresponding language-
guided attention weights. It can be observed that the closer
the feature map content is to the language description, the
higher the language-guided attention weight becomes. This
helps to emphasize the regions in the image related to the lan-
guage description, thereby decoupling the described object.

Ablation study on ALCM. Table 5 showcases the perfor-

(a) Input (b) 0.351 (c) 0.463 

(e) 0.621 (f) 0.724 (g) 0.800

(d) 0.533 

(h) 0.893

Figure 9: Feature maps in LCAM and corresponding language-
guided attention weights, with the language description: “A star-
shaped toy on the tabletop.”

0

0.2

0.4

0.6

Nature Real Wild Postcard Solid

0.31 0.31 0.31 0.29
0.36

0.55 0.54 0.56 0.60 0.60 

Pre-ALCM Similarity Post-ALCM Similarity

Figure 10: Comparison of Pre-ALCM and Post-ALCM similarities
between language and corresponding image features across different
datasets.

mance of models with and without ALCM. It is clear that
the models equipped with ALCM outperform those without,
demonstrating that ALCM enhances the role of language in
image reflection removal. To further validate that ALCM
can improve the alignment between language and image fea-
tures, Figure 10 displays the cosine similarities between lan-
guage features and image features before and after processing
through ALCM. The similarities post-ALCM are consistently
higher across various datasets, indicating an improved align-
ment between language and image features following the ap-
plication of ALCM.

Ablation study on LSCT. To demonstrate the effective-
ness of LSCT, we conducted experiments by further remov-
ing LSCT on top of removing ALCM, with the results shown
in Table 5. It can be observed that the performance without
LSCT is lower than that with LSCT. This indicates that LSCT
plays a positive role in enhancing reflection removal perfor-
mance, especially when paired with ALCM, which amplifies
the effects of LSCT.

6 Conclusion
In this paper, we propose the ALANet to remove complex re-
flections with low dependence on language accuracy. Specif-
ically, ALANet employs filtering and optimization strategies
to mitigate the effects of inaccurate language and enhance
the alignment between language and visual features, while
leveraging language cues to decouple layer content from fea-
ture maps. Additionally, we introduce the CRLAV dataset
to evaluate the model’s performance under complex reflec-
tions and varying levels of language accuracy. Experimental
results demonstrate the effectiveness of the ALANet and its
superiority over SOTA methods.
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