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Abstract

Animation has gained significant interest in the re-
cent film and TV industry. Despite the success of
advanced video generation models like Sora, Kling,
and CogVideoX in generating natural videos, they
lack the same effectiveness in handling animation
videos. Evaluating animation video generation
is also a great challenge due to its unique artist
styles, violating the laws of physics and exagger-
ated motions. In this paper, we present a compre-
hensive system, AniSora, designed for animation
video generation, which includes a data processing
pipeline, a controllable generation model, and an
evaluation benchmark. Supported by the data pro-
cessing pipeline with over 10M high-quality data,
the generation model incorporates a spatiotemporal
mask module to facilitate key animation produc-
tion functions such as image-to-video generation,
frame interpolation, and localized image-guided
animation. We also collect an evaluation bench-
mark of 948 various animation videos, with specifi-
cally developed metrics for animation video gener-
ation. Our entire project is publicly available on
https://github.com/bilibili/Index-anisora/tree/main

1 Introduction
The animation industry has seen significant growth in recent
years, expanding its influence across entertainment, educa-
tion, and even marketing. As demand for animation con-
tent rises, the need for efficient production processes is also
growing quickly, particularly in animation workflows. Tradi-
tionally, creating high-quality animation has required exten-
sive manual effort for tasks like creating storyboards, gen-
erating keyframes, and inbetweening, making the process
labor-intensive and time-consuming. Previous efforts[Siyao
et al., 2021; Xing et al., 2024] to incorporate computer vision
techniques have assisted animators in generating inbetween
frames for animation. However, these methods often show
effectiveness only within certain artistic styles, limiting their
applicability to the varied demands of modern animations.

With recent advancements in video generation, there
has been notable progress in generating high-quality

videos across various domains. Inspired by Genera-
tive Adversarial Networks[Goodfellow et al., 2014], Vari-
ational Autoencoders[Kingma, 2013], and, more recently,
transformer-based architectures[Vaswani, 2017; Peebles and
Xie, 2023], the field has seen remarkable improvements in
both efficiency and output quality. However, most video
generation methods are trained and evaluated on general-
purpose datasets, typically featuring natural scenes or real-
world objects[Blattmann et al., 2023; Yang et al., 2024]. The
domain of animation video generation, which plays an im-
portant role ranging from entertainment to education, has re-
ceived relatively little attention. Animation videos often rely
on non-photorealistic elements, exaggerated expressions, and
non-realistic motion, presenting unique challenges that cur-
rent methods do not address.

In addition to the generation challenges, the evaluation of
video synthesis is also inherently complex. Evaluating video
generation quality requires assessing not only the visual fi-
delity of each frame but also temporal consistency, coherence,
and smoothness across frames[Huang et al., 2024]. For ani-
mation video generation, this challenge is amplified. Anima-
tion videos feature unique artist styles, including color and
style that need to be consistent, even as characters undergo
exaggerated motions and transformations. Traditional evalua-
tion metrics are commonly used for real-world videos, which
may not fully capture the consistency of the main characters
and art style of this kind of video. Therefore, developing ef-
fective evaluation datasets and metrics customized for anima-
tion video generation is essential in this specialized field.

In this paper, as shown in Fig. 1, a full system AniSora
is presented for animation video generation. First, our data
processing pipeline offers over 10 million high-quality text-
video pairs, forming the foundation of our work. Secondly,
we develop a unified diffusion framework adapted for an-
imation video generation. Our framework leverages spa-
tiotemporal masking to support a range of tasks, including
image-to-video generation, keyframe interpolation, and lo-
calized image-guided animation. By integrating these func-
tions, our system bridges the gap between keyframes to create
smooth transitions and enables dynamic control over specific
regions, such as animating different characters speaking pre-
cisely. This allows a more efficient creative process for both
professional and amateur animation creators. Fig. 2 demon-
strates some examples generated by our model under image-
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Figure 1: Overview. We propose AniSora, a comprehensive framework for animation video generation that integrates a high-quality anima-
tion dataset, a spatiotemporal conditional model, and a specialized animation video benchmark. The Data Processing Pipeline constructs a
10M video clip dataset derived from 1M diverse long animation videos. The Video Generation model employs a spatiotemporal conditional
model, supporting various User Control and Interaction modes and enabling tasks such as frame interpolation, localized guidance, and so
on. The benchmark set comprises 948 ground-truth videos spanning diverse styles, common motions, and both 2D and 3D animations. The
prompt suite provides standardized prompts and guiding conditions, complemented by a Quantitative Evaluation with six objective metrics
for assessing visual appearance and consistency. Additionally, Human Preference Evaluation confirms strong alignment with the proposed
metrics. AniSora surpasses SOTA models, establishing a new benchmark for animation video generation.

Figure 2: Our method can generate high quality and high consis-
tency in various kinds of 2D/3D animation videos. These examples
are generated under image-to-video settings conditioned on the left-
most frame. It is best viewed in color.

to-video conditions.
Additionally, we propose a benchmark dataset and evalua-

tion metrics specifically designed for animation video evalua-
tion. Currently, there is no existing evaluation dataset for this
purpose, so we collected 948 animation videos across various
categories and manually refined the prompts. Besides, ex-
isting evaluation standards struggle to effectively assess the
quality of animation video generation. To address this gap,
we have introduced innovative metrics that specifically assess

animation video generation. These include character consis-
tency, animation art style consistency, and distortion detec-
tion, which are crucial for maintaining the unique visual iden-
tity of animation videos.

Our contributions can be summarized as follows:

• We develop a comprehensive video processing system
that significantly enhances preprocessing for animation
video generation.

• We propose a unified framework designed for animation
video generation with a spatiotemporal mask module,
enabling tasks such as image-to-video generation, frame
interpolation, and localized image-guided animation.

• To the best of our knowledge, we for the first time
released a benchmark dataset and evaluation metrics
specifically for evaluating animation video generation.

2 Related Work

2.1 Video generation models

With the development of diffusion models, significant
progress has been made in video generation over the past
two years. Some research including[Blattmann et al., 2023;
Yang et al., 2024; Zheng et al., 2024; Lab and etc., 2024] have
demonstrated promising results in general video generation.
Due to the limited available animation datasets, these models
are not particularly effective for animation video generation.
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2.2 Animation video datasets
Video data is one of the most critical elements for gener-
ation models, particularly for domain-specific data. How-
ever, obtaining high-quality animation video data is espe-
cially difficult compared to natural video datasets. Previ-
ous research has released some animation-related datasets,
including ATD-12K[Siyao et al., 2021], AVC[Wu et al.,
2022]. While these datasets, collected from various anima-
tion movies, are helpful for interpolation and super-resolution
tasks, they are limited by small size. More recently, Sakuga-
42M[Zhenglin Pan, 2024] has been proposed with 1.2M clips.
It has improved compared to previous datasets that only con-
tained a few hundred clips. However, this remains insufficient
for training video generation models, in contrast to general
video data sets such as Panda-70M[Chen et al., 2024] and
InternVid-200M[Wang et al., 2023]. Additionally, 80% of its
clips are low-resolution and less than 2 seconds, which ham-
pers the generation of high-quality videos.

2.3 Evaluation of video generation models
Evaluating video generation models has remained a signif-
icant challenge in the past few years. Recently, Liu et al.
have made great efforts to generate a diverse and comprehen-
sive list of 700 prompts using LLM[Liu et al., 2023]. Be-
sides, Huang et al. have proposed vbench for general video
generation[Huang et al., 2024]. The authors have released
16 evaluation dimensions and prompt suites. While these di-
mensions are still insufficient to comprehensively evaluate all
aspects of animation video generation. Moreover, there is a
notable absence of dedicated animation evaluation datasets,
which limits the ability to benchmark models specifically de-
signed for this genre. In [Zeng et al., 2024], the authors have
focused mainly on the performance of recent video genera-
tion models in various categories of datasets. Furthermore,
they have also investigated some vertical-domain models like
pose-controllable generation and audio-driven animation.

While these works provide valuable insights into the capa-
bilities of these models in generating diverse video content,
they don’t specifically address the unique requirements and
challenges associated with animation video generation.

3 Dataset
We build our animation dataset according to the observation
that high quality text-video pairs are the cornerstone of video
generation, which is proved by recent researches [Polyak et
al., 2024]. In this section, we give a detailed description of
our animation dataset and the evaluation benchmark.
Animation Dataset Construction: We build a pipeline to get
high-quality text-video pairs among 1 million raw animation
videos. First of all, we use scene detection[Breakthrough,
2024] to divide raw videos into clips. Then, for each video
clip, we construct a filter rule from four dimensions: text-
cover region, optical flow score, aesthetic score, and number
of frames. The filter rule is gradually built up through the
observations in model training. In detail, the text-cover re-
gion score[Baek et al., 2019] can drop those clips with text
overlay similar to end credits. Optical flow score [princeton

vl, 2020] prevents those clips with still images or quick flash-
back scenes. Aesthetic score [christophschuhmann, 2022] is
utilized to preserve clips with high artistic quality. Besides,
we retain the video clips whose duration is among 2s-20s ac-
cording to the number of frames. Furthermore, we collected
0.5M high-quality animation videos along with their corre-
sponding captions to create video-text pairs, which were used
to fine-tune Qwen-VL2[Wang et al., 2024]. After fine-tuning,
the model provides more accurate descriptions of characters,
scenes, and action details in animation content. After the
steps mentioned above, about 10% clips (more than 10M
clips) with captions can be retained in the training step.

In addition, since occupationally-generated animation
videos typically have significantly higher production costs
and quality compared to user-generated animation content,
we fine-tuned Qwen-VL2 based on these data. This model is
then utilized to filter higher-quality clips to further improve
the model’s performance. Specifically, during the training
process, we adjust the proportions of specific training data
(e.g., talking and motion amplitude) according to the ob-
served performance.
Benchmark Dataset Construction: Since there is currently
no benchmark dataset specifically designed for animation
content, we construct a benchmark dataset manually to com-
pare the generation videos between our model and other re-
cent researches. 948 animation clips are collected and labeled
with different actions, e.g., talking, walking, running, eating,
and so on. Among them, there are 857 2D animation clips and
91 3D clips. These action labels are summarized from more
than 100 common actions with human annotation. Each label
contains 10-30 video clips. The corresponding text prompt
is generated by fine-tuned Qwen-VL2 (mentioned above) at
first, then is corrected manually to guarantee the text-video
alignment. (More details in section 5 and 6)

4 Method
In this section, we present an effective approach for animation
video generation using a diffusion transformer architecture.
Section 4.1 provides an overview of the foundational diffu-
sion transformer model. In section 4.2, we introduce a spa-
tiotemporal mask module that extends the model, enabling
crucial animation production functions such as image-to-
video generation, frame interpolation, and localized image-
guided animation within a unified framework. These en-
hancements are essential for professional animation produc-
tion. Finally, section 4.3 details the supervised fine-tuning
strategy employed on the animation dataset.

4.1 DIT-based Video Generation Model
We adopt a DiT-based[Peebles and Xie, 2023] text-to-video
diffusion model as the foundation model. As shown in Fig. 3,
the model leverages the three components to achieve coher-
ent, high-resolution videos aligned with text prompts.
3D Casual VAE used in video generation frameworks[Gupta
et al., 2023; Yu et al., 2023]serves as a specialized encoder-
decoder architecture tailored for spatiotemporal data com-
pression. This 3D VAE compresses videos across both spa-
tial and temporal dimensions, significantly reducing the dif-
fusion model computing. We follow the approach of Yang et
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Figure 3: Method. This figure illustrates the Masked Diffusion
Transformer framework for animation video generation, designed to
support various spatiotemporal conditioning methods for precise and
flexible animation control. A 3D Causal VAE compresses spatial-
temporal features into a latent representation, generating the guide
feature sequence G, while a reprojection network constructs the
mask sequence M . These components, combined with noise and
prompt’s feature, serve as input to the Diffusion Transformer. The
transformer employs techniques such as patchify, 3D-RoPE embed-
dings, and 3D full attention to effectively capture spatial-temporal
dependencies. This framework seamlessly integrates keyframe in-
terpolation, motion control, and mid-frame extension, simplifying
animation production and enhancing creative possibilities.

al. [Yang et al., 2024] to extract latent features, transforming
the original video with dimensions (W,H, T, 3) into a latent
representation of shape (W/8, H/8, T/4, 16).
Patchify is a critical step for adapting vision tasks to
transformer-based architectures [Alexey, 2020]. Given an in-
put video of size T × H × W × C, it is split spatio into
patches of size P × P , and temporal into size Q resulting in
(T/Q) × (H/P ) × (W/P ) × C patches. This method en-
ables efficient high-dimensional data processing by reducing
complexity while retaining local spatial information.
3D Full Attention We propose 3D full attention module
for spatial and temporal modeling considering the great suc-
cess of long-context training in LLM[Dubey et al., 2024]
and foundation video generation model[Yang et al., 2024;
Polyak et al., 2024].
Diffusion schedule applies Gaussian noise to an initial sam-
ple x0 over T steps, generating noisy samples xt =

√
αt x0+√

1− αt ϵ, where αt =
∏t

i=1(1− βi) and ϵ ∼ N (0, I). The
reverse process predicts ϵ by minimizing the mean squared
error:

Ldiffusion = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
.

To stabilize training, we use the v-prediction loss [Salimans
and Ho, 2022], where v =

√
1− αt x0 −

√
αt ϵ and the loss

becomes

Lv−prediction = Ex0,v,t

[
∥v − vθ(xt, t)∥22

]
.

This approach enhances stability and model performance.

4.2 Spatiotemporal Condition Model
Keyframe Interpolation creates smooth transitions be-
tween key-frames by generating intermediate frames, or ”in-
between.” It is an essential stage in professional animation

production and represents some of the most labor-intensive
tasks for artists. We extend this concept to video generation
conditioned on one or multiple arbitrary frames placed at any
position within a video sequence.
Motion Control Our framework enables precise control over
motion regions addressing the limitations of text-based con-
trol in these aspects. This approach enhances artists’ control
over video content, allowing them to express their creativity
while significantly reducing their workload.

Masked Diffusion Transformer Model
In the Masked Diffusion Transformer framework, we con-
struct a guide feature sequence G = {G1, G2, . . . , Gn} by
placing the VAE-encoded guide frame Fpi at designated po-
sitions pi, while setting Gj = 0 for all other positions j ̸= pi.
A corresponding mask sequence M = {M1,M2, . . . ,Mn}
is generated, where Mpi

= 1 for guide frame positions
and Mj = 0 otherwise. The mask is processed through
a re-projection function, yielding an encoded representation
Reproj(M). The final input to the Diffusion Transformer is
the concatenation of noise, encoded mask, prompt’s T5 fea-
ture, and guide sequence along the channel dimension:

X = Concat(Noiset, Reproj(M), G, T5) (1)

This setup integrates position-specific guidance and mask en-
coding, enhancing the model’s conditioned generation capa-
bilities.

Motion Area Condition
This framework can also support spatial motion area condi-
tions inspired by Dai et.al[Dai et al., 2023]. Given the image
condition Fpi

, and motion area condition is represented by
mask MF , the same shape with Fpi

. Motion area in MF is la-
beled 1, other place is set to 0. As equation 1 in 4.2, for guide
frame position pi, set Mpi = MF . The data processing and
training pipeline can be summarized as follows: Construct-
ing video-mask pairs, we first construct paired training data
consisting of videos and corresponding masks. Using a fore-
ground detector by Kim et.al [Kim et al., 2022], we detect the
foreground region in the first frame of the video. This region
is then tracked across subsequent frames to generate a fore-
ground mask for each frame. Union of foreground masks,
the per-frame foreground masks are combined to create a uni-
fied mask MF , representing the union of all foreground re-
gions across the video. Video latent post-processing, for the
video latent representation z0, non-moving regions are set to
the latent features of the guide image, ensuring static areas
adhere to the guide. LoRA-based conditional training, we
train the conditional guidance model using Low-Rank Adap-
tation (LoRA) with a parameter size of 0.27B. This approach
significantly reduces computational requirements while en-
abling efficient model training.

4.3 Supervised Fine-Tuning
We initialize our model with the pre-trained weights of
CogVideoX, which was trained on 35 million diverse video
clips. Subsequently, we perform full-parameter supervised
fine-tuning (SFT) on a custom animation training dataset to
adapt the model specifically for animation tasks.
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Multi-Task Learning Compared to the physically consistent
motion patterns in the real world, animation styles, and mo-
tion dynamics can vary significantly across different works.
This domain gap between datasets often leads to substantial
quality differences in videos generated from guide frames
with different artistic styles. We incorporate image gener-
ation into a multi-task training framework to improve the
model’s generalization across diverse art styles. Experimental
results in the appendix demonstrate that this approach effec-
tively reduces the quality gap in video generation caused by
stylistic differences in guide frames.
Mask Strategy During training, we unmask the first, last, and
other frames obtained through uniform sampling with a 50%
probability. This strategy equips the model with the ability to
handle arbitrary guidance, enabling it to perform tasks such as
in-betweening, first-frame continuation, and arbitrary frame
guidance, as discussed in Section 4.2.

In practice, we also employed several other effective train-
ing strategies, such as weak to strong training, generated sub-
title removal, and temporal multi-resolution training. De-
tailed training procedures can be found in the appendix.

5 Benchmark

To evaluate the effects of the animation video generation
models, we build a comprehensive benchmark dataset, as
mentioned in section 3. To give a fair comparison of different
methods, we define 6 basic dimensions to describe the qual-
ity of the generated videos. Then, we introduce the human
annotation and evaluation metrics, which are partly based on
the annotation results.

5.1 Evaluation Dimensions

In fact, the essential concepts for evaluating a animation
video generation model are visual appearance and visual
consistency. Visual appearance describes the basic quality,
which is only concerned with the generation of videos them-
selves, including visual smoothness, visual motion, and vi-
sual appeal, while visual consistency considers the text-video,
image-video, and character consistency, respectively.

Inspired by Vbench[Huang et al., 2024], we first adopted
a similar approach to evaluate visual appearance and con-
sistency, such as calculating the clip score between frames
to analyze distortions and using aesthetic scores to estimate
aesthetic quality. However, we found that these scores often
showed significant discrepancies from subjective human ex-
periences on animation data and there was no clear distinction
between different methods. As shown in Fig.4, the bottom
video received a lower score due to its larger motion ampli-
tude. However, the top video contains visible distortions that
are easily noticeable to humans, yet these are not reflected in
the scoring metrics.

Therefore, we adopted a regression-based approach for cer-
tain dimensions to learn human scoring standards. A de-
tailed description of six evaluated metrics is given as follows.
These evaluation criteria are specifically designed for anima-
tion data and align closely with human subjective experience.

Figure 4: Video generated by Opensora-V1.2 (top) and Vidu (bot-
tom). The top video received a higher score despite containing no-
ticeable distortions.

5.2 Human Annotation
In the experiment, each case in the benchmark has 6 genera-
tion video clips with different participant models. 20 expert
volunteers give their rating (1-5, 5 is the best) from above 6
dimensions, the detail scores are shown in Section 6.1.

5.3 Visual Appearance
We evaluate the basic quality of a video clip from three as-
pects: visual smoothness, visual motion, and visual appeal.
We constructed an evaluation model training set to develop
an evaluation model aligned with human scoring. We gen-
erated 5000 animated video clips using various models de-
scribed in Section 6.1. These samples were manually anno-
tated following the approach outlined in Section 5.2, serving
as the ground truth for training the evaluation model.
Visual Smoothness Our goal was to learn the human stan-
dards to evaluate video smoothness and to be able to identify
animated videos with distortions. Thus, we trained a model
to regress human-generated scores to avoid the impact of mo-
tion on visual content. The training set consists of generated
clips and annotations, mentioned in Section 5.3. To enhance
the robustness of the model, we also incorporated hundreds
of anime videos as the highest-scoring examples.
Visual Motion We employ a model based on the Action-
CLIP [Wang et al., 2021] framework to train a motion-scoring
model that evaluates the magnitude of the primary motion in
animation videos. About 2 thousand animation video clips
and their corresponding motion captions are collected into
6 degrees of movement amplitude (from stillness to signifi-
cant motion) to finetune the action model. Finally, the motion
score is obtained from the similarity score between the de-
signed motion prompt and the participant video.

Smotion = Cos(MCLIP (V ),MCLIP (Tm)), (2)

where MCLIP denotes the finetuning action model. V rep-
resents the generation video and Tm denotes the designed mo-
tion prompt. (Details is provided in supplementary)
Visual Appeal We define visual appeal score to reflect the
basic effects of video generation. As discussed in Section
5.1, the aesthetic score models used in previous studies were
trained on real-world datasets such as LAION-5B, simply cal-
culating aesthetic scores on animation data does not provide
sufficient differentiation, as the results from various methods
are indistinguishable.

Using the key frame extraction method to collect the key
frames in the video first, then we train a regress model on the
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evaluation model training set to learn human aesthetic stan-
dards. The formulation shows as follows:

Sappeal = Aes(SigLIP (I0,1,...,K)) Ii ∈ KeyFrm(V ),
(3)

where KeyFrm, SigLIP and Aes denote the key frame ex-
traction method, feature encoder method and aesthetic evalu-
ation method, and K denotes the number of the keyframes.

5.4 Visual Consistency
Three factors are considered to evaluate the visual consis-
tency of the generation video: text-video, image-video, and
character consistency, respectively.
Text-video Consistency To evaluate the text-video consis-
tency, we finetune the vision encoder and the text encoder
modules with a regression head according to animation video-
text pairs according to the training set in Section 5.3. The
formulation is shown as follows:

Stvc = Reg(Ev, Et), (4)

where Reg denotes the regression head, and Ev , Et denote
the vision and text encoder.
Image-video Consistency In the I2V situation, the partici-
pant image, as an input factor, should ensure that its style is
consistent with the generated videos. Similar to text-video
consistency, we combine a vision encoder with a regression
head to evaluate the score. The model is also fine-tuned on the
training set in Section 5.3. The formulation lists as follows:

Sivc = Reg(Ev(V ), Ev(Ip)), (5)

where V and Ip denote the participant video clip and the input
image.
Character Consistency Character consistency is a crucial
factor in animation video generation. When the character
generated by the protagonist in the animation changes, even if
the quality of the video is great, it still has the risk of infringe-
ment. Hence, we design a set of procedures including detec-
tion, segmentation, and recognition. We apply GroudingDino
[Ren et al., 2024] and SAM [Ravi et al., 2024] to achieve
character mask extraction for each frame in the videos. Then,
we finetune a BLIP-based model [Li et al., 2022] to establish
connections between each mask and the animation IP char-
acter. In detail, thousands of source video clips with their
characters labeled are treated as training sets to obtain and
store the reliable features from BLIP-based model. In the
evaluation step, we get the score of character consistency by
calculating the cosine similarity between the generated and
stored character’s features.

SIPc =
1

S

S∑
i

Cos(BLIP (Mi), feac), (6)

where S denotes the number of sample frames, Mi denotes
the mask obtained from GroudingDino and SAM methods,
and feac denotes the stored character’s features.

6 Experiment
6.1 Benchmark Evaluation
In this section, we give both objective and human evalua-
tion results of our benchmark. Six recent i2v models are

involved in our evaluation: Open-sora [Zheng et al., 2024],
Open-sora-plan [Lab and etc., 2024], Cogvideox [Yang et al.,
2024], Vidu-1.5 [Vidu, ], Minimax-I2V01 [Minimax, ] and
Anisora(ours). Tab. 1 gives the detailed scores from 6 dimen-
sions in the benchmark evaluation and the overall scores of
the human evaluation. We observe that our model performs
better than the other five methods on most dimensions, espe-
cially on visual smoothness and character consistency, except
on the visual motion dimension. These mainly because we
conduct a thorough assessment of the balance between gen-
eration quality and motion magnitude, and find most gener-
ation clips with big motion results in distortion or unnatural
segments. In order to prove our benchmark is applicable to
anime scenarios, we also evaluated our benchmark dataset us-
ing seven relevant dimensions in VBench benchmark. Due to
the space limitation, we outline the results in Appendix. We
observed that certain dimensions, including Motion Smooth-
ness, Aesthetic Quality, I2V Background, and Overall Con-
sistency, lacked sufficient discriminative power. In particular,
some poorly generated results received higher scores than the
ground truth, highlighting a discrepancy that fails to accu-
rately capture human perception and experience.

Fig. 5 illustrates the detailed correlations among 6 dimen-
sions between human evaluation and benchmark results. Ob-
viously, they are highly correlated with each other.

6.2 Spatiotemporal Mask Module
Frame Interpolation Tab. 1 presents the results of differ-
ent interpolation settings on benchmark dataset. Our evalu-
ation process involved generating videos on our benchmark
with various guidance conditions sampled at equal propor-
tions, which can refer to Fig .3. We then compute the aver-
age score of all samples as well as a specific statistical analy-
sis for keyframe interpolation results. The performance indi-
cates that single-frame guidance achieves competitive results
whether the guiding frame is placed at the beginning, mid-
dle, or end of the frame sequence, which also consistently
outperforms other methods. Adding more guiding frames
further improves character consistency. We also observed
from the motion and smooth score that our baseline model
achieves a balance between motion range and consistency,
while keyframe guidance enables the model to produce an-
imation videos with larger motion ranges and more realistic
motion. More samples can be found in the appendix.
Motion Area Condition The evaluation of motion area con-
dition is constructed based on our benchmark dataset. For
each initial frame, we performed saliency segmentation, fol-
lowed by connected-component analysis to generate bound-
ing boxes for each instance. Then we manually filtered the
results to select high-quality motion area masks, resulting in
200 samples. Following the experiment settings in [Dai et al.,
2023], we conducted the comparison of motion mask preci-
sion in Tab. 2. We also computed the score of AnimateAny-
thing on our selected 200 samples. The lower score is primar-
ily due to flickering and noise appearing outside the motion
mask area. The results demonstrate the effectiveness of our
spatial mask module in controlling movable regions. It is also
noticeable that even without motion control, our generation
model trained for animation video still shows a certain level
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Models Human Visual Visual Visual Text-Video Image-Video Character
Evaluation Smooth Motion Appeal Consistency Consistency Consistency

Vidu-1.5 60.98 55.37 78.95 50.68 60.71 66.85 82.57
Opensora-V1.2 41.10 22.28 74.9 22.62 52.19 55.67 74.76
Opensora-Plan-V1.3 46.14 35.08 77.47 36.14 56.19 59.42 81.19
CogVideoX-5B-V1 53.29 39.91 73.07 39.59 67.98 65.49 83.07
MiniMax-I2V01 69.63 69.38 68.05 70.34 76.14 78.74 89.47

AniSora(Ours) 70.13 71.88 48.45 65.38 74.26 82.66 94.88
AniSora(Interpolated Average) - 70.78 53.02 64.41 73.56 80.62 91.59
AniSora(KeyFrame Interpolation) - 70.03 58.1 64.57 74.57 80.78 91.98

Table 1: Benchmark Evaluation Results.

Figure 5: Human Evaluation and Benchmark Results Alignment.

of control. This may due to the effective prompt-based guid-
ance for the main subject. Motion mask guidance examples
are shown in the appendix.

Method Motion Mask Precision

AnimateAnything 0.6141
Ours - No Control 0.4989
Ours - Motion Mask 0.9604

Table 2: Comparison of motion mask precision.

6.3 Animation Video Training
2D and 3D Animation Analysis using QWEN2 [Wang et
al., 2024] shows that 2D samples account for 85% of our
data set, yet the quality of 3D animation generation consis-
tently exceeds that of 2D. Benchmark evaluations in the ap-
pendix confirm 3D animations demonstrate superior visual
appearance and consistency, a phenomenon unique to anima-
tion training. We attribute this gap to the pre-trained model’s
exposure to real-world video data. Unlike 2D animations with
diverse motion patterns, 3D animations rendered by physics-
based engines like Unreal Engine follow consistent physical
laws, enabling better knowledge transfer during SFT. Conse-
quently, improving generalization on 2D animation data re-
mains more challenging than on 3D or real-world data.
Multi-Task Learning We evaluated multi-task training us-
ing a manga with a unique artistic style. About 270 illustra-
tions were used for the image generation task, while video
training data remained the same as the baseline model. Ad-
ditional illustrations served as first-frame conditions during
video generation. After 5k training steps, as shown in the

appendix, the generated videos showed significantly greater
stability and improved visual quality, particularly with highly
distinctive guidance images. This approach effectively tailors
animations to specific characters and mitigates domain gaps
caused by variations in artistic styles, especially when high-
quality animation data is limited.
Low-resolution vs High-resolution During the weak-to-
strong training process, we observed that higher frame rates
and resolutions enhance stability in visual details. As demon-
strated in the appendix, at 480P, facial features exhibit no-
ticeable distortions, while at 720P, the model preserves both
motion consistency and fine details. The higher resolution in-
creases token representation for high-density areas, improv-
ing temporal consistency and overall content quality.

7 Conclusion
In this paper, our proposed AniSora, a unified framework
provides a solution to overcoming the challenges in anima-
tion video generation. Our data processing pipeline generates
over 10M high-quality training clips, providing a solid base
for our model. Leveraging a spatiotemporal mask, the gener-
ation model can create videos based on diverse control condi-
tions. Furthermore, our evaluation benchmark demonstrates
the effectiveness of our method in terms of character consis-
tency and motion smoothness. We hope that our research and
evaluation dataset establish a new benchmark and inspire fur-
ther work in the animation industry. Besides, we are going to
evaluate more models on our benchmark, providing valuable
insights for model optimization.

Despite promising results, some artifacts and flickering are
still present in the generated videos. In future work, we
plan to integrate reinforcement learning with our evaluation
benchmark to generate higher-quality videos.
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