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Abstract
Low-rank regularization (LRR) has been widely
applied in various machine learning tasks, but the
associated optimization is challenging. Directly
optimizing the rank function under constraints is
NP-hard in general. To overcome this difficulty,
various relaxations of the rank function were stud-
ied. However, optimization of these relaxed LRRs
typically depends on singular value decomposition,
which is a time-consuming and nondifferentiable
operator that cannot be optimized with gradient-
based techniques. To address these challenges, in
this paper we propose an efficient differentiable ap-
proximation of the generalized LRR. The consid-
ered LRR form subsumes many popular choices
like the nuclear norm, the Schatten-p norm, and
various nonconvex relaxations. Our method en-
ables LRR terms to be appended to loss functions in
a plug-and-play fashion, and the GPU-friendly op-
erations enable efficient and convenient implemen-
tation. Furthermore, convergence analysis is pre-
sented, which rigorously shows that both the bias
and the variance of our rank estimator rapidly re-
duce with increased sample size and iteration steps.
In the experimental study, the proposed method is
applied to various tasks, which demonstrates its
versatility and efficiency. Code is available at https:
//github.com/naiqili/EDLRR.

1 Introduction
Low-rank structures have proven to be effective in a wide
range of machine learning tasks, encompassing computer vi-
sion [Ren et al., 2022], model compression [Idelbayev and
Carreira-Perpinán, 2020], representation learning [Fu et al.,
2021; Fu et al., 2022], and large language model adaptation
[Hu et al., 2022a]. To discover and utilize the low-rank struc-
tures, a typical paradigm is to introduce low-rank regulariza-
tion (LRR) terms to the models, which can conveniently ex-
press various low-rank priors and assumptions.

However, with the presence of LRR terms, the optimiza-
tion problem can be extremely difficult. It is well-known that

∗Corresponding authors: Tao Dai and Yong Jiang.

even under linear constraints, optimizing the rank function
is NP-hard [Wright and Ma, 2022]. To alleviate this com-
putational intractability, many relaxations of the rank func-
tion have been proposed. For example, the nuclear norm is
known to be the tightest convex approximation of the rank
function, and thus has been extensively investigated and ap-
plied [Yang et al., 2016]. The Schatten-p norm and its
variants are considered as the generalization of the nuclear
norm, and also found successful applications [Xu et al., 2017;
Chen et al., 2021]. These relaxation techniques penalize all
singular values of the target matrix simultaneously, while
in practical applications it is desired that the large singular
values are less impacted, so the key information of the tar-
get matrix is preserved. With this motivation, recent stud-
ies proposed novel nonconvex relaxations [Kang et al., 2015;
Peng et al., 2015; Friedman, 2012; Gao et al., 2011].

However, it is still challenging to efficiently optimize these
models with relaxed low-rank regularization. Current opti-
mization methods can be categorized as the matrix factoriza-
tion approach and the rank function optimization approach,
but both of them suffer severe shortcomings in practice.

The basic idea of matrix factorization is to decompose
the target matrix into the product of multiple low-rank sub-
matrices. This formulation allows gradient to be propagated,
and so the optimization is straightforward. A key problem
of this approach is that it demands strong prior knowledge
about the matrix’s true rank or its upper bound. In almost all
practical situations such knowledge is unavailable, and so the
good performance frequently depends on laborious parame-
ter selection. Arguably, the goal of rank regularization is to
discover the true rank of a matrix, but this approach leaves
this burden to the users.

In contrast, the rank function optimization approach incor-
porates a regularization term into the loss function, allowing
the appropriate matrix rank to be automatically determined.
However, solving the associated optimization problem is non-
trivial. Previous works attempted to adapt techniques from
the convex optimization literature, such as the proximal gradi-
ent and alternating direction method of multipliers (ADMM).
Unfortunately, many of these methods require the loss func-
tion to be convex, which severely limits their applicability.
Additionally, these approaches are inconvenient to imple-
ment, and each work needs to laboriously derive the spe-
cific optimization rules. Critically, all these methods rely
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on singular value decomposition (SVD). Besides being time-
consuming, SVD is generally a nondifferentiable operation
that hinders gradient propagation (although there exists so-
phisticated method for computing SVD that allows gradi-
ent propagation, it incurs O(D4) computational complexity
which is prohibitive for practical applications [Papadopoulo
and Lourakis, 2000]). Consequently, applying gradient-based
optimization techniques or utilizing popular deep learning li-
braries (e.g., PyTorch and TensorFlow) becomes infeasible,
and high-performing GPUs cannot be fully utilized.

In this paper, we propose a novel differentiable approxima-
tion of a general form of LRR, which covers a broad range of
relaxations of the rank function. The main idea of our work
is to introduce an equivalent stochastic definition of the rank
function, as well as its relaxed variants. This significant dis-
covery enables us to approximate the LRR term with finite
samples and a partial sum of the series expansion. Our im-
plementation is publicly available in the supplementary ma-
terial. The main contributions of this paper are summarized
as follows:

1. We propose an efficient differentiable approximation of
the generalized LRR, which covers the nuclear norm, the
Schatten-p norm, and many recently proposed noncon-
vex relaxations of the rank function.

2. The proposed LRR approximation is convenient and ef-
ficient. It can be directly appended to loss functions and
optimized by existing deep learning libraries. In most
cases, a few lines of code are sufficient to adapt to new
problems. The operations are GPU-friendly, which en-
able highly parallel and efficient computation.

3. Theoretical convergence analysis is presented, which
rigorously demonstrates that both the bias and the vari-
ance of the proposed rank estimator rapidly reduce with
increased sample size and iteration steps.

4. We performed extensive experiments over various tasks,
including matrix completion, video fore-background
separation, and image denoising, which demonstrate the
versatility and efficiency of our proposed method.

2 Related Work
2.1 Relaxations of the Rank Function
Minimizing the rank function is challenging, and even find-
ing the optimal solution under the linear constraint is NP-hard
[Wright and Ma, 2022]. To address this challenge, various
relaxations of the rank function have been proposed. The nu-
clear norm ∥S∥∗ =

∑r
i=1 σi(S) is the tightest convex re-

laxation of the rank function, and is one of the most pop-
ular substitution [Yang et al., 2016]. However, the nuclear
norm penalizes all singular values simultaneously. Since for
many matrices in practical applications, the major informa-
tion is captured by a few singular values, so it is desired that
they are less impacted when reducing the rank. Motivated
by this, advanced relaxations of the general form R(S) =∑r

i=1 h(σi(S)) are considered, where h is a function that
increases penalties on small singular values. Typical exam-
ples of the relaxed rank function include the γ-nuclear norm
[Kang et al., 2015], Laplace [Trzasko and Manduca, 2008],

LNN [Peng et al., 2015], Logarithm [Friedman, 2012], ETP
[Gao et al., 2011], and Geman [Geman and Yang, 1995]. A
summary of these relaxations and the corresponding penalty
function h can be found in [Hu et al., 2021].

2.2 Optimization of the Low-rank Regularization
Matrix factorization and rank function optimization are two
prominent approaches for optimizing low-rank models.

The concept of matrix factorization involves decomposing
the target matrix into the product of multiple low-rank com-
ponents. Under this formulation, the optimization is straight-
forward. Notable examples include the decomposition of
weight matrices into low-rank factors. Additionally, Geng
et al. demonstrated that this strategy enables neural networks
to learn global information and can even replace the atten-
tion mechanism [Geng et al., 2021]. Ornhag et al. (2020)
introduced a differentiable bilinear parameterization of the
nuclear norm, relying on matrix decomposition. The au-
thors further proposed VarPro, which utilizes second-order
optimization that enjoys faster convergence [Ornhag et al.,
2021]. This idea was further extended in [Xu et al., 2017;
Chen et al., 2021], where the multi-Schatten-p norm was con-
sidered as a generalization of the bilinear parameterization.
However, a significant challenge of this approach lies in the
requirement of strong prior knowledge about the true rank of
the matrix.

On the other hand, the rank function optimization ap-
proach introduces a regularization term to the loss, allow-
ing the appropriate matrix rank to be automatically deter-
mined during training. Initial research attempts applied ex-
isting convex optimization techniques to the problem, such
as the proximal gradient algorithm [Yao et al., 2018] and the
iteratively re-weighted algorithm [Mohan and Fazel, 2012].
However, these methods require the loss function to be con-
vex. Alternating direction method of multipliers (ADMM) is
a popular method for optimizing the regularized loss. Shang
et al. (2017) proposed the double nuclear penalty, which
covers the Schatten-p norm with p = 1/2 and 2/3. Re-
cently, it is discovered that one of the optimization sub-
procedures within ADMM can be seen as performing image
denoising, enabling the integration of existing denoising neu-
ral networks into the ADMM framework [Hu et al., 2022b;
Liu et al., 2023]. However, all these ADMM based meth-
ods do not support gradient propagation, so deep learning li-
braries and high-performing GPUs cannot be fully utilized.

There are a few works that consider SVD-free optimiza-
tion of LRRs, which draw inspirations from the varia-
tional characterization of the nuclear norm, i.e., ∥X∥∗ =
minAB=X

1
2 (∥A∥

2
F + ∥B∥2F ), where X ∈ Rm×n, A ∈

Rm×d, B ∈ Rd×n and d ≥ rank(X) [Srebro et al., 2004;
Rennie and Srebro, 2005]. Recent research further extends
these methods to handle the Schatten-p quasi-norm, i.e.,
∥x∥p = (

∑
i |xi|p)

1
p with p ∈ (0, 1) [Shang et al., 2016;

Fan et al., 2019; Giampouras et al., 2020]. Jia et al. (2020)
proposed GUIG for low-rank matrix recovery, and the associ-
ated bilinear variational problem can be solved without com-
puting SVD.

To summarize, all these methods suffer at least one of
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the following drawbacks: 1) Their optimization is based on
ADMM or its variant, which hinder gradient propagation. 2)
They require the upper bound of the true rank d as input.
When d is too large, the slow convergence brings huge com-
putational burden, while a too small d deteriorates the perfor-
mance. 3) They can only optimize a restricted class of LRRs,
particularly the nuclear norm and the Schatten-p quasi-norm
with p ∈ (0, 1). They cannot be applied to various recently
proposed nonconvex LRRs like the γ-Nuclear norm [Kang et
al., 2015] and Laplace [Trzasko and Manduca, 2008].

3 Methodology
3.1 Notations and Problem Statement
Notations In this paper, uppercase bold letters (e.g., X)
denote matrices, and lowercase bold letters (e.g., x) denote
vectors. For a vector x, ∥x∥p = (

∑
i |xi|p)

1
p represents its

lp-norm. For a matrix X, σi(X) is its ith largest singular
value, or abbreviated as σi. We use X ⪰ 0 to indicate ma-
trix X is positive semi-definite. ∥X∥p = (

∑r
i=1 σi(X)p)

1
p

is the Schatten-p norm, where r is the rank of X. Particu-
larly, the nuclear norm is ∥X∥∗ = ∥X∥1, the spectral norm
is ∥X∥ = σ1(X), and the rank is equivalently represented
as ∥X∥0. X⊤ and X† denote the transpose and the pseudo-
inverse of the matrix respectively. span(X) is the linear
space spanned by the columns of X, and PX[u] = XX†u
denotes the projection of the vector u onto the column space
span(X).
Problem statement For a given input-output pair (X,Y)
where X ∈ Ra×b and Y ∈ Rc×d, consider the empirical loss
w.r.t. a learning function f parameterized by θ, denoted as:

L(X,Y,θ) = l(f(X;θ),Y) +R(S), (1)

where S = g(X,Y,θ) ∈ Rm×n. Here the matrix S can de-
pend on both the data and function parameters.

The regularization term R(S) enforces S to be low-rank.
Ideally, the definition could be directly applied, i.e., R(S) =
∥S∥0. However, this regularization term is nondifferentiable,
and the associated optimization problem is NP-hard in gen-
eral. To address this problem, in this work R(S) will repre-
sent some form of approximation or relaxation of the rank.
For example, it is well-known that the nuclear norm (i.e.,
∥S∥∗ =

∑r
i=1 σi(S)) is the convex envelope of the rank func-

tion [Wright and Ma, 2022], and is used as the surrogate func-
tion in many works. However, the nuclear norm penalizes all
singular values simultaneously, while in practical problems
it is desired that large singular values are less impacted, so
the important information of the matrix is preserved. Mo-
tivated by this observation, many nonconvex relaxations of
the rank function have been introduced [Kang et al., 2015;
Peng et al., 2015; Friedman, 2012; Gao et al., 2011]. To
encompass all these formulations, in this work the regulariza-
tion term is considered to be of the form:

R(S) =
r∑

i=1

h(σi(S)). (2)

Here function h generally increases the penalty of small sin-
gular values. In this paper, we refer to this form of regular-
ization as the generalized low-rank regularization (LRR).

The goal of this paper is to develop a method to approxi-
mately compute the generalized LRRR(S) in Eq. (2), which
is a differentiable operation that allows the gradients to be
computed and propagated. Thus R(S) can be conveniently
used in a plug-and-play fashion, and the optimization prob-
lem in Eq. (1) can be conveniently solved by off-the-shelf
optimization frameworks, and utilize high-performing GPUs
for efficient parallel computation.

Several concrete applications are presented below:
Matrix completion Suppose S ∈ Rm×n is a low-rank

matrix, Ω ⊂ {1, ..,m} × {1, ..., n} is an index set that de-
notes the observable entries, and PΩ[S]ij = 1{(i,j)∈Ω} · Sij

represents the observation projection. The problem of matrix
completion aims to recover S based on partial observations,
i.e., minX∥PΩ[X]− PΩ[S]∥2F + λR(X).

Video fore-background separation A video sequence
is represented as a 3D tensor V ∈ Ra×b×t, where a, b de-
note the width and height of each frame, and t indexes time.
Let V′ ∈ Rab×t be a reshaped 2D matrix. In video fore-
background separation it is assumed that the reshaped matrix
can be decomposed as V′ = S + O, where S is a low-rank
matrix that represents the background, and O is a sparse ma-
trix that represents the foreground object. So the problem can
be solved by optimizing minX∥V′ −X∥1 + λR(X).

DNN-based image denoising In image denoising an
observed image X is considered as a clean image S cor-
rupted by noise N, i.e., X = S + N. A DNN model
learns a function f to predict the noise by optimizing
minθ E

[
∥f(X;θ)−N∥2F

]
. Since the clean images are

approximately low-rank, it regularizes the loss function as
minθ E

[
∥f(X;θ)−N∥2F + λR(f(X;θ)−N)

]
. Note that

most existing work has difficulty in optimizing such general
formulations.

3.2 Efficient Differentiable Low-rank
Regularization

Iterative matrix pseudo-inverse and square root
We first show that two fundamental operations, i.e., matrix
pseudo-inverse and matrix square root, have differentiable ap-
proximations. These results serve as the cornerstones of the
proposed method, as we later demonstrate that the general
LRR can be constructed with these operations.

Proposition 1 (Iterative matrix pseudo-inverse [Ben-Israel
and Cohen, 1966]). For a given matrix S ∈ Rm×n, define the
recursive sequence Si+1 = 2Si − SiSSi, with S0 = αS⊤.
Then limi→∞ Si = S†, provided 0 < α < 2/σ2

1(S).

Intuitively, when the iteration converges we have Si =
Si+1. So Si = SiSSi, which is exactly the definition of
pseudo-inverse. In practice, taking a large enough iteration
step N , results in a satisfactory approximation of the matrix’s
pseudo inverse, i.e., SN ≈ S†. Furthermore, since the it-
erative computation only involves matrix multiplication and
subtraction, it is obviously a differentiable operation.

As a consequence, the projection operator PS[u] also has a
differentiable approximation. Recall that PS[u] = SS†u de-
notes the projection of the vector u onto the column space of
matrix S. So PS[u] ≈ SSNu, where SN is the approxima-
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tion of the pseudo-inverse computed by the iterative method.
Again the r.h.s. is obviously differentiable.

The matrix square root can also be computed by an iterative
method, which is called the Newton-Schulz iteration:

Proposition 2 (NS iteration for matrix square root). For A ∈
Rm×m, initialize Y0 = 1

∥A∥F
A,Z0 = I. The Newton-Schulz

method defines the following iteration:

Yk+1 =
1

2
Yk (3I −ZkYk) ,Zk+1 =

1

2
(3I −ZkYk)Zk.

Then
√
∥A∥FYk quadratically converges to A

1
2 , i.e.,√

∥A∥FYk → A
1
2 .

We highlight the following points of Proposition 1 and 2:
1) Both are differentiable operations, which allow gradient-
based methods for the associated optimization; 2) Both are
parallelizable operations, which are GPU-friendly and thus
efficient for large-scale datasets. Our proposed method in-
herits these advantages, which results in differentiable and
parallelizable approximation of the generalized LRR.

Differentiable rank approximation
The rank of a matrix is defined as the dimension of its column
space (or equivalently the row space). The most well-known
method for computing the rank is to first apply SVD, and then
count the number of nonzero singular values. However, the
SVD step is nondifferentiable. Interestingly, the following
proposition presents an alternative approach for computing
ranks without using SVD. Due to space limitation, all the
proofs are deferred to the Appendix.

Proposition 3 (Equivalent definition of matrix rank [Wright
and Ma, 2022]). The rank of a matrix S can be equivalently
computed as the average squared length of a random Gaus-
sian vector g ∼ N (0, I)) projected onto its column space:

∥S∥0 = rank(S) = E
[
∥PS[g]∥22

]
. (3)

To apply the result for practical rank computation,
first sample N independent random Gaussian vectors
g1, ...,gN ∼ N (0, I). Then the sample average is used
to approximate the rank, i.e., ∥S∥0 = E

[
∥PS[g]∥22

]
≈

1
N

∑N
i=1∥PS[gi]∥22. Since it has been shown that the pro-

jection operator PS[g] has a differentiable approximation, by
substituting the routine we obtain a differentiable method for
calculating the matrix rank.

However, rank is a piecewise constant function. Though it
is now differentiable, it cannot provide useful gradient infor-
mation for the overall optimization problem. To address this
challenge, in the following we consider several relaxations of
matrix rank, the approximations of which are not only differ-
entiable, but also provide informatic gradients.

Differentiable nuclear norm approximation
The nuclear norm is the convex envelope of rank, and is the
most popular relaxation. The common approach for comput-
ing the nuclear norm is to first apply SVD, and then sum up
the singular values. The following proposition presents an
alternative method, similar to the case of rank calculation.

Proposition 4. The nuclear norm of a matrix S can be equiv-
alently computed as:

∥S∥∗ = E
[
⟨PS [g] , (SS⊤)

1
2g⟩

]
, (4)

where g ∼ N (0, I) is a random Gaussian vector.
Note that besides the projection operator PS [g], this

proposition further requires calculating the matrix square root
(SS⊤)

1
2 , which can be obtained with Proposition 2. Fi-

nally, by replacing the expectation with the sample mean, the
nuclear norm can be approximately computed using differ-
entiable operators. Furthermore, the approximated nuclear
norm can provide useful gradient information for optimiza-
tion.

Differentiable approximation of the generalized low-rank
regularization
In this subsection, we consider general LRR of the form
R(S) =

∑r
i=1 h(σi(S)), where r denotes the rank of S. The

function h increases the penalty of the small singular values,
so that the principle information of the matrix is preserved
while reducing the rank.

First, we introduce a lemma that allows any Schatten-p
norm to be stochastically computed, which can be viewed as
an extension of Proposition 3 and 4.
Theorem 1. For a matrix S, its Schatten-p norm, defined as
∥S∥p = (

∑r
i=1 σi(S)

p)
1
p where r is the rank of S, can be

alternatively computed as

∥S∥pp =
r∑

i=1

σp
i = E

[
⟨PS [g] , (SS⊤)

p
2 g⟩

]
, (5)

where p ∈ N+ and g ∼ N (0, I).
Next we show that a broad range of relaxations of the rank

function can be stochastically computed. Particularly, we in-
troduce two methods to utilize the above lemma, which are
based on the Taylor expansion and the Laguerre expansion.
Taylor Expansion-based Generalized LRR
Theorem 2. Let S be a matrix of rank r, and h : R → R
be a sufficiently smooth function and g ∼ N (0, I). Then the
generalized LRR defined in Eq. (2) can be computed as

r∑
i=1

h(σi(S)) =

∞∑
p=0

h(p)(0)

p!
E
[
⟨PS [g] , (SS⊤)

p
2 g⟩

]
. (6)

However, Taylor expansion approximates the target func-
tion based on a fixed initial point, and the truncated error
grows when the evaluation location moves away from the ini-
tial point. This motivates the application of advanced approx-
imation techniques.
Laguerre Expansion-based Generalized LRR
Orthogonal polynomial approximation is an important fam-
ily of function approximation techniques, including the well-
known Legendre expansion and Laguerre expansion. In our
problem the Laguerre expansion is particularly suitable, since
it approximates functions with range (0,+∞).

The Laguerre expansion is based on the Laguerre polyno-
mials L = {L1(x), L2(x), ...}, which is a countable infi-
nite set of mutually orthogonal polynomials, each .denoted
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(a) ground truth (b) observed image (c) RPCA (FGSR) (d) fast-MDT-Tucker (e) MSS

(f) IRNN (g) TNN-3DTV (h) DLRL (i) ours-nuclear (j) ours-L-Lap

Figure 1: Comparison of matrix completion for text removal. (a) ground truth; (b) image with text; (c)-(j) recovered images.

as Lk(x) =
∑

p ak,px
p. For a target function f(x) with

range (0,+∞), the method decomposes it into f(x) =∑
k≥0 ckLk(x), where ck are the coefficients computed as

ck =
∫∞
0

Lk(x)e
−xf(x)dx.

Theorem 3. Keeping the same notations, we have
r∑

i=1

h(σi(S)) =
∑
k≥0

∑
p

ckak,pE
[
⟨PS [g] , (SS⊤)

p
2 g⟩

]
.

Here h(x) =
∑

k≥0 ckLk(x) utilizes the Laguerre expansion,
ak,p are the polynomial coefficients.

In both Theorem 2 and 3, by using a finite sum to approx-
imate the infinite series, the general regularization form be-
comes differentiable, and can provide useful gradients for the
optimization. Furthermore, the computation solely depends
on matrix multiplication, which is a GPU-friendly operation
that allows highly efficient parallel implementation.

3.3 Algorithm and convergence analysis
In what follows, we present the algorithm for computing the
differentiable approximation of the Schatten-p norm (Theo-
rem 1) and the main convergence result. Due to space limit,
detailed proofs, descriptions of applying truncated series ex-
pansion (Theorem 2 and 3), and further corresponding con-
vergence analysis are left in the Appendix.

Theorem 4. We use underline notations (i.e., PS [gi] and
(SS⊤)

p
2 ) to denote the approximation results obtained

by the iterative methods, with iteration steps k1 for ma-
trix pseudo inverse and k2 for matrix root. Let X =
1
N

∑N
i=1⟨PS [gi], (SS

⊤)
p
2 gi⟩. Then for any ϵ > 0,

Pr

(
|X −

∑
i σ

p
i |∑

i σ
p
i

≤ ϵ

)
≥ 1−

2C(k1, k2)
2∥S∥2p2p

N (
∑

i σ
p
i (ϵ+ E(k1, k2)))

2 ,

where C(k1, k2) → 1, E(k1, k2) → 0 exponentially as k1
and k2 increase.

Algorithm 1 Differentiable approximation of ∥S∥pp
Require: S ∈ Rm×m, p, sample sizes (N ), iteration steps

for projection and matrix pseudo inverse (k1 and k2)
Ensure: Approximation of ∥S∥pp

1: res← 0
2: for i in 1, 2, ..., N do
3: Sample gi ∼ N (0, I)
4: v← ApproxProject(S,gi, k1) {Approx. PS[gi]}
5: M← ApproxRoot(SS⊤, p, k2) {Approx. (SS⊤)

p
2 }

6: res← res+ v⊤Mgi

7: end for
8: return res/N

Remarks: 1) The theorem fully characterize the convergence
behavior w.r.t. three determining factors, i.e., sample size
(N ), and the iteration steps (k1 and k2); 2) X is an unbi-
ased estimator of the Schatten-p norm; 3) C(k1, k2)→ 1 and
E(k1, k2) → 0 converges exponentially fast as k1 and k2 in-
crease; 3) Larger sample size N can effectively reduce the
estimator’s variance.

4 Experimental Results

In this section, we perform various experiments to demon-
strate the versatility, convenience, as well as efficiency of our
method. We first examine two classic LRR tasks, i.e., ma-
trix completion and video fore-background separation. One
advantage of our proposed method is to conveniently intro-
duce LRR terms into any loss function, particularly deep neu-
ral networks. So we further exploit this property in DNN-
based image denoising. Experiments about convergence and
parameter sensitivity is deferred to Appendix due to space
constraints. All experiments were conducted on a machine
equipped with 3080Ti GPU.
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PSNR
Method nuclear T-γ∗ T-Lap L-γ∗ L-Lap RPCA f-MDT MSS IRNN TNN- DLRLFGSR Tucker 3DTV

drop 20% 37.09±0.18 38.44±0.07 38.41±0.14 38.39±0.16 38.47±0.11 26.0 24.28 26.62 28.33 30.17 35.99
drop 30% 35.03±0.10 36.24±0.13 36.01±0.19 36.19±0.13 36.20±0.13 24.89 24.44 25.58 28.51 30.03 34.58
drop 40% 33.09±0.05 34.28±0.19 34.16±0.18 34.21±0.07 34.22±0.15 16.41 24.16 24.83 27.52 29.82 33.58
drop 50% 31.39±0.09 32.51±0.19 32.31±0.15 32.32±0.11 32.38±0.09 6.95 23.90 24.05 26.91 29.54 32.43
block 17.89±0.01 31.14±0.02 29.67±0.03 24.64±0.01 25.80±0.02 13.75 23.20 26.09 25.46 28.17 30.82
text 26.73±0.02 35.07±0.06 34.99±0.03 34.97±0.05 34.98±0.01 21.49 22.68 24.56 26.20 29.99 37.19
time (s) 4.35 3.83 3.88 3.83 3.86 16.83 1.73 10.70 8.82 24.85 494.46

Table 1: Comparison of matrix completion algorithms for image inpainting. Bold terms and underlined terms denote the best and second
best results. “time” denotes the average processing time per image. See the main text for details.

(a) escalator (b) highway (c) shop

Figure 2: The results using our algorithm in fore-background separation. From top to bottom: original frames of the video, separated
backgrounds, and foreground objects.

4.1 Matrix completion

Natural images can be represented as matrices that possess
low-rank priors. Particularly, singular values of natural im-
ages are dominated by a few of the largest components, which
allows us to model image restoration as a low-rank matrix
completion problem. When dealing with colorful images, we
process each color channel as an independent matrix. We
evaluate the effectiveness of different methods using PSNR.

Table 1 presents the numerical result, and Figure 1 visu-
alizes the image qualities. In Table 1, the first five columns
denote our method, using different approximation and relax-
ation strategies. Particularly, “nuclear” denotes using the nu-
clear norm without other relaxation function, i.e., directly ap-
ply Proposition 4. “T-γ∗” and “T-Lap” denote using the Tay-
lor expansion-based method for function approximation, with
the γ-nuclear norm [Kang et al., 2015] and Laplace [Trza-
sko and Manduca, 2008; Hu et al., 2021] as the relaxation
function (i.e., h) respectively. Similarly, “L-γ∗” and “L-Lap”
denote using the Laguerre expansion-based method for func-

tion approximation. “drop XX%” means randomly removing
a certain potion of pixels, while “block” and “text” use pre-
defined patterns to obscure the image. The methods being
compared include RPCA with FGSR [Fan et al., 2019], f-
MDT Tucker [Yamamoto et al., 2022], MSS [Oh et al., 2015],
IRNN [Lu et al., 2015], TNN-3DTV [Jiang et al., 2018], and
DLRL [Chen et al., 2021].

From the results, we can see that: 1) Our method out-
performs other baselines in almost all the cases; 2) By us-
ing relaxation methods, our performance can be further im-
proved; 3) Both Taylor and Laguerre expansions are effec-
tive for function approximation, with each excelled in differ-
ent scenarios; 4) By utilizing parallel computation and high-
performing GPUs, our method strikes the best balance be-
tween performance and efficiency.

Further results and visualization of matrix completion can
be found in the Appendix.
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(a) trained with noise level 15 (b) trained with noise level 25 (c) trained with noise level 50

Figure 3: Results of applying low-rank regularization and the proposed differentiable approximation technique in the DnCNN denoising
model, measured in PSNR.

4.2 Video fore-background separation
We now apply our method to the task of video fore-
background separation. Given a video sequence V ∈
Ra×b×t, where a and b represent the dimensions of each
frame, and t indexes the time steps. For each frame f ∈ Ra×b,
we can reshape the matrix into a vector f ′ ∈ Rab×1 and
concatenate all frames together, resulting in the final matrix
V′ ∈ Rab×t. We assume that the reshaped matrix can be
decomposed as V′ = S + O, where S is a low-rank ma-
trix representing the background, and O is a sparse matrix
representing the foreground object. Thus, the problem can be
solved by optimizing minX ∥V′−X∥1+λR(X), where ∥·∥1
denotes the L1 norm andR(X) represents the LRR term. We
use the nuclear norm as the surrogate rank function.

Figure 2 illustrates the results obtained by applying our
method to fore-background separation. The algorithm ef-
fectively separates the backgrounds of individual frames by
utilizing the global information of the complete video se-
quences. Notably, our approach produces distinct boundaries
for the background, even in dynamic scenarios such as the
continuously moving escalator example. Unlike conventional
methods that tend to blur the details of moving objects like es-
calator steps, our algorithm maintains clear edges and bound-
aries in the obscured background region.

4.3 Regularizing DNN-based denoising models
One of the major strengths of our method is its flexibility
in incorporating the LRR term into any loss function, and
the optimization can be accomplished with deep learning li-
braries. Given the impressive performance of deep neural net-
works, it is highly desirable to apply our approach to leverage
low-rank priors. We explore this avenue in DNN-based im-
age denoising, particularly using the denoising convolutional
neural networks (DnCNNs) [Zhang et al., 2017].

Following the experimental configuration of [Zhang et al.,
2017], we conducted our experiments using a training set of
400 images with dimensions of 180 × 180. Gaussian noise
levels were set at σ = 15, 25, 50. Since the low-rank struc-
ture is only applicable to the entire image, we utilized the
full image as input when calculating the regularization loss.
For the reconstruction loss, the settings remained unchanged,
with the images divided into patches of size 40 × 40. The

datasets in our experiments were the Berkeley segmentation
dataset (BSD68) and the Set12 dataset, which were consistent
with previous studies.

The comparison between the original network and the net-
work augmented with LRR is depicted in Figure 3. One of the
challenges faced by these denoising networks is their reliance
on prior knowledge of the noise level (σ) during training.
Consequently, the trained models tend to overfit to the spe-
cific noise level provided, resulting in inferior performance
when confronted with different noise levels during testing.
However, as observed in the figure, this issue is significantly
mitigated when the LRR and our proposed differentiable ap-
proximation are applied. Although there is a slight drop in
performance when the test noise level matches the training
noise level, substantial gains are observed at unseen noise lev-
els. This is most evident in Figure 3 (c), in which our method
frequently improve the performance by a large margin.

5 Conclusion
In this paper, a novel differentiable approximation of the gen-
eralized LRR was proposed. The form of the regularization
is quite general, covering a broad range of both convex and
nonconvex relaxations. The key advantages of the proposed
method include its versatility, convenience, and efficiency.
By appending the differentiable LRR to a loss function in
a plug-and-play fashion, the optimization can be automati-
cally accomplished with gradient-based machine learning li-
braries. The operations are GPU-friendly, which facilitates
parallel and efficient computation. On the theoretical side,
we rigorously prove that both the bias and the variance of
the rank approximation rapidly reduce with increased sample
size and iteration steps. In the experimental study, the pro-
posed method was successfully applied to a variety of tasks.
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