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Abstract
Graph Neural Network (GNN) is powerful in solv-
ing various graph-related tasks, while its message
passing mechanism may lead to latency during in-
ference time. Multi-Layer-Perceptron (MLP) can
achieve fast inference speed but with limited per-
formance. One solution to fill this gap is through
Knowledge Distillation. However, current distil-
lation methods follow a “node-to-node” paradigm,
while considering the complex relationships be-
tween different node pairs, direct distillation fails to
capture these multiple-granularity features in GNN.
Furthermore, current methods which focuses on the
alignment of logits between teacher and student ig-
nores further learning within layers inside MLP.
Therefore, in this paper, we introduce a multi-scale
knowledge distillation method (MSN-GDM) aim-
ing to capture multiple knowledge from GNN to
MLP. We firstly propose a multi-scale node-pair
grouping strategy to assign node pairs to different-
scale groups according to node pair similarity met-
rics. The similarity metrics considers both node
features and topological structures of the given
node pair. Then based on the preprocessed node
pair set groups, we design a multi-scale distilla-
tion method that can capture comprehensive knowl-
edge in the corresponding groups. The hierarchical
weighted sum of each layer is applied as the final
output. Extensive experiments on eight real-world
datasets demonstrate the effectiveness of our pro-
posed method.

1 Introduction
Graph, as an abstract data structure, is currently widely ap-
plied in various real-world applications, social network anal-
ysis, recommendation system, neuroscience, etc [Qiu et al.,
2018; Wu et al., 2022; Ye et al., 2024]. Recently, the ap-
pearance of Graph Neural Networks (GNNs) has provided
efficient solutions to graph-related tasks. Based on message
passing mechanism where node can capture features from its

∗Corresponding author

neighborhood, GNNs are advantageous in capturing graph
representations, and semi-supervised learning has witnessed
a success in node-level classification task [Kipf and Welling,
2016]. However, when considering practical deployment,
there exist certain gaps. One gap lies in its neighborhood-
fetching mechanism, where the explicit utilization of struc-
ture information leads to latency during reference time. In
contrast, Multi-Layer-Perceptrons (MLPs) achieve higher in-
ference speed, but with poorer performance. One way to
bridge its gap is through Knowledge Distillation, a model
compression method aiming to transfer the knowledge from
one complex teacher model to lightweight student model
[Hinton et al., 2015; Joshi et al., 2022].

Graph Knowledge Distillation is useful in bridging GNN
and MLP [Liu et al., 2023; Tian et al., 2023; Gou et al., 2021].
Previous studies have explored different distillation frame-
works from GNNs to MLPs. GLNN [Zhang et al., 2021] fol-
lowed the traditional distillation paradigm between teacher
and student models, leading to better performance and fast
inference speed. [Huo et al., 2023] distills graph information
from two aspects: feature and structure, which applies data
augmentation during training. BGNN [Guo et al., 2023] im-
proves the performance of MLPs by boosting multiple teacher
GNNs. KRD [Wu et al., 2023b] is a framework which quan-
tifies the knowledge and can make reliable distillation. NOS-
MOG [Tian et al., 2022] can learn better structure informa-
tion and is robust to feature noise. VQGraph [Yang et al.,
2024] proposed a VQ-VAE-based framework that can facil-
itate better structure-aware knowledge distillation. SimMLP
[Wang et al., 2024] revisited distillation from mutual infor-
mation and introduced a “pretrain-finetune” framework with-
out teacher’s supervision.

However, these researches have neglected following as-
pects: Most distillation methods just follow a direct “node-to-
node” fashion, which directly aligns logits between teacher
nodes and corresponding student nodes. While for graph
data, information within GNN may be more complicated,
especially considering the complex topological structure of
graph, where the relationship between one node and its neigh-
bors can be various, and simple distillation is not capable
of capturing these comprehensive knowledge. According to
[Wu et al., 2023a], GNN may carry two types of informa-
tion from spectral perspective, and GNN’s message pass-
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ing mechanism promotes the similarity of representation be-
tween nodes and its neighbors. Thus, traditional “node-to-
node” distillation may fail to transfer finer information at high
frequency which is drown by low frequency. However, its
FF-G2M method is a global solution for all nodes, ignoring
difference in local structure for different node pairs in one
graph. Specially, for one given node, its multiple relation-
ships with different neighborhoods reflect features at different
scales (shown in Fig. 1), and different distillation methods
are required to capture corresponding different information.
Moreover, compared to message passing mechanism for lay-
ers within GNN, the fully connected layers inside MLP just
ignore the learning of graph structure. Current distillation
methods just focus on alignment between different logits, ig-
noring the forward process within inside MLP layers.

To address the weakness mentioned above, we design a
novel GNN-MLP distillation method. The motivation is that
the relationships between one node and its neighborhoods
can be multiple and different relationships among node pairs
require different methods to extract corresponding informa-
tion. The model we proposed, namely Multi-Scale Node-pair
grouping Graph-Distillation-MLP (MSN-GDM), groups the
node pairs at different scales and uses corresponding optim
functions to capture multi-scale information. The main con-
tribution of this paper is summarized as follows:

• We propose a multi-scale node pair grouping strategy
for preprocess. Nodes are assigned to different groups
according to the similarity metric between node pairs.
The metrics calculation considers both node features and
their structures.

• We design corresponding multi-scale distillation-
optimization loss based on multi-scale node pair set
groups in the previous step. The loss consists of
intra-layer loss and inter-layer loss.

• Extensive experiments on eight real-world datasets
demonstrate the effectiveness of our distillation method.

2 Related Work

2.1 Graph Neural Network

Recent studies have shown the superior performance of
Graph neural networks (GNNs). Based on the Spectral Graph
Theory, the original GNN captured the features of the graph
from a spectral perspective [Bojchevski and Günnemann,
2017]. [Kipf and Welling, 2016] proposed a semi-supervised
framework (GCN) which follows the paradigm of spatial do-
main by aggregating the neighborhood nodes and updating
target nodes. Through this message passing mechanism, spa-
tial GNN outperforms spectral GNN in its fast training time
while making good use of graph structure. Recently, increas-
ing GNN-based methods are dedicated to proposing novel ar-
chitectures for better graph representation learning in spatial
domain. GAT adds attention module for better aggregation
[Veličković et al., 2017], GraphSAGE designs an inductive
framework that can generate embeddings for unseen nodes
[Hamilton et al., 2017].

2.2 Knowledge Distillation
Knowledge Distillation (KD) is a method to compress mod-
els at a large scale, through which the knowledge is trans-
ferred from a large-scale teacher model to a lightweight
student model, thereby imporoving the performance of stu-
dent model while keeping its low complexity of time and
space. Current graph knowledge distillation methods can
be divided into three types [Gou et al., 2021; Tian et al.,
2023]: GNN-GNN distillation that intends to decrease the
layers and dimensions of teacher GNNs [Yang et al., 2020;
Yan et al., 2020]; GNN-MLP distillation that aims to trans-
fer knowledge from GNNs to MLPs [Wu et al., 2022;
Zhang et al., 2021; Wu et al., 2023b; Yang et al., 2024; Wang
et al., 2024] and Self-Distillation which refines the transfer
of knowledge inside one single model [Chen et al., 2021;
Zhang et al., 2023; Deng and Zhang, 2021; Wu et al., 2024].
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Figure 1: Different knowledge metrics on Cora dataset: MSM (the
larger, the better), MDM (the lower, the better).

3 Preliminaries
Graph: We denote a Graph as G = (V , E), which stands for
its two components: nodes and edges. Each node vi has a d-
dimension feature xi and the corresponding feature matrix of
G is X ∈ RN×d. For node-level task, each node has a class
label yi, and for graph-level task, the label yG is for the whole
graph.

Graph Neural Network: For most graph neural networks
(GNNs), they all follow message passing mechanism which
aggregates its neighborhood nodes before updating the value
of its node vi [Kipf and Welling, 2016; Veličković et al.,
2017; Hamilton et al., 2017].

hl+1
i = UPDATE(hl

i, AGG({hl
j |j ∈ Ni})) (1)

Where hl
i is the representation for node vi in l-th layer,

AGG(.) stands for the aggregation of its neighborhood nodes
Ni, and UPDATE(.) means the update operation of hi.

Knowledge Distillation: Knowledge Distillation aims to
transfer the knowledge from a cumbersome teacher model to
a lightweight student model [Hinton et al., 2015]. Knowl-
edge Distillation for graphs mainly takes the form of impos-
ing KL-divergence between the soft labels of teacher and stu-
dent models. The distillation loss function can be defined as
follows:
LKD = τ2DKL(softmax(zT /τ), softmax(hS/τ)) (2)

Where zT and hS means the soft labels of teacher and student
respectively, τ is the temperature which controls the process
of distillation.
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Figure 2: The overall framework of our proposed MSN-GDM. We define L = 3 for illustration, which stands for the number of student
model layers. We preprocess the dataset by dividing different nodes to corresponding multi-scale node pair groups based on our similarity
metric. Based on the preprocessed node pair groups, a multi-scale optim loss is designed to distill multi-scale knowledge.

4 Methods
This section focuses on details of the proposed MSN-GDM.
Before formal introduction, we first make an analysis of mea-
surement of different knowledge in GNNs. The framework
of MSN-GDM is shown in Fig. 2, which is composed of two
steps: In step 1, we preprocess the graph by grouping differ-
ent neighbor node pairs of each node vi based on our node
similarity metric. Then in step 2, a multi-scale optimization
function is designed according to mean value of correspond-
ing node pair set groups. The weighted sum of each layer will
be the final output for MLP to capture comprehensive repre-
sentations. More details will be presented in the following
subsections.

4.1 Measuring Different Knowledge in GNN
According to [Wu et al., 2022], a trained GNN contains
both low and high frequency features, while simple distilla-
tion method only captures low-frequency information, ignor-
ing high-frequency information, which can be viewed as the
difference between two nodes spatially. Two ways are pro-
posed to measure different knowledge in GNN. The distance
between connected nodes can be utilized as low-frequency
measurement and the pairwise distance differences between
teacher GNN and student MLP shows the capability for MLP
to capture fine-grained information.

In general, the knowledge can be divided into two parts.
Here we define these two types of knowledge in Eq. 3.

MSM(G) = 1

|E|
∑

(i,j)∈E

xT
i · xj

|xi| · |xj |

MDM(G) = 1

|E|
∑

(i,j)∈E

∥∥∥|zSj − zSi | − |zTj − zTi |
∥∥∥2

(3)

We use cosine similarity to measure low-frequency knowl-
edge in GNN which represents similarities between node
pairs (Mean-Sim-Metric, MSM), and use MSE(.) between

teacher and student logits to measure those fine-grained in-
formation , which shows the student model’s ability to keep
its distance between two nodes (Mean-Differ-Metric, MDM).
The following plots are shown in Fig. 1.

According to the Mean-Sim-Metric figure in Fig. 1, the
MSM value of vanilla MLP is the lowest, showing its weak-
ness in capturing graph information, while the value of GCN
and its distilling student MLP increases from the beginning
and converges to a certain value during the training process
[Chen et al., 2020a; Keriven, 2022; Chen et al., 2021]. The
reason lies in GNN’s message passing mechanism, which fi-
nally minimizes the distance between one node and its neigh-
bors. Current “node-to-node” fashion just ignores the differ-
ence in local features of graph, where the neighbors of one
node may have different features. In other word, a multi-
scale distillation is necessary which is tailored for capturing
features at different scales.

4.2 Multi-Scale Node Pair Grouping Strategy
According to our motivation, different node pairs contain
different feature patterns, and we hope to tell if the node
pair shares similar patterns or different ones before design-
ing corresponding operations. Thus, we propose a multi-
scale node pair grouping strategy to assign node pairs into
different groups. The grouping strategy consists of two parts,
namely node pair similarity metric calculation and multi-
scale node pair grouping, and the whole process is shown in
Fig. 3.
Node pair similarity metric calculation. Considering that
the two attributes of the graph: feature and structure, together
make the representation, here we define feature similarity
(φf ) and structure similarity (φs) accordingly. For feature
similarity, we utilize cosine similarity between given node
pair (vi, vj). For structure similarity, intuitively, the repre-
sentation of a node can also be influenced by its neighbors
[Xing et al., 2024]. Nodes with more “similar” neighbors
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Figure 3: Overall framework of Multi-Scale Node Pair Grouping
strategy. We define J = 3 and values of node similarities just for
illustration.

tend to maintain their own features while nodes with more
“different” neighbors are more likely to be influenced. Thus,
we consider the neighbor nodes for given vi (denote as Ni).
We normalize the mean value of feature similarity for vi:

Hi =
1

degi

∑
j∈Ni∪i

xT
i · xj

|xi| · |xj | (4)

Here, the term degi refers to the degree of node vi. Based
on above definitions, φf and φs for node pair (vi, vj) are as
follows: {

φf (i, j) = − xT
i ·xj

|xi|·|xj |
φs(i, j) = ∥Hi −Hj∥

(5)

Where the ||.|| operator is the L1 Norm of the variable, and
the smaller value means larger similarity between vi and vj .

The value of φf and φs together decide the type of knowl-
edge between (vi, vj). We define knowledge similarity φk as
the combination of the two values. Moreover, encouraged by
[Wu et al., 2023a], the abstract value of φk should reflect the
extent of knowledge (vi, vj) carries. So the final value of φk

is as follows:

φk(i, j) =

[
k1
k2

]T
·
[
φfij
φsij

]
+ b

=

[
α

1− α

]T
·
[
φf (i, j)
φs(i, j)

]
+ [1− α]

(6)

Here α is a hyper-parameter ranging [0, 1], by which the
range of φk is normalized to [−1, 1], where smaller value
means larger similarity between two nodes.

Multi-scale node pair grouping. The value of φk varies
from -1 to 1, and for node vi and its neighbors {j|j ∈ Ni},
we assign vj to different groups according to φk(i, j).

For scale factor J , we firstly divide the interval of [-1,1]
equally into J parts, where the range of j-th interval is be-
tween [−1 + 2(j−1)

J ,−1 + 2j
J ] → [ℓj , rj ]. Then we assign

node to the correct interval according to its φk. As is shown in
Eq. 7, for each node vi, we maintain a J-scale node set (de-
note asMSi), where the j-th element contains nodes whose
value is among [ℓj , rj). Finally, we merge the node set of
each node as the multi-scale node pair set group for the given

graph G:
MSi(j) = {k|k ∈ Ni, φk(i, k) ∈ [ℓj , rj)}

MSG(j) =
⋃
i

MSi(j), i ∈ V (7)

After merging, two connected nodes may appear in the
same group. Essentially, the grouping strategy can be viewed
as operations on edges. For implementation, we do both cal-
culation and grouping based on edges (E) of the graph. For
graphs at larger scale where the expense to directly prepro-
cess whole graph can be extremely great, we randomly sam-
ple edges from original E for scalability. Then we employ
above preprocess operation on the edge-scaling graph.{E ′ ← sample(E , ρ)

G′ ← G(V , E ′, X)
(8)

Where ρ is a hyper-parameter controlling number of edges to
sample on large-scale graphs. In this paper we set it as 0.3.

4.3 Multi-Scale Distillation-Optimization Loss
According to Eq. 1, the GNN forward process can be re-
garded as type of “aggregate then update ” operation. En-
couraged by this, Our optim loss is composed of two parts:
Intra-Layer Loss within one single layer and Inter-Layer
Loss between two layers, whose process in shown in Fig. 4.
Intra-Layer Optim Loss. The idea of intra-layer optim loss
(Lintra) is from graph self distillation method, where a model
distills knowledge from itself without participation of teacher
model [Hu et al., 2021; Luo et al., 2021]. Instead, model
distills knowledge from structure information by certain con-
straints [Wu et al., 2024].

Further, inspired by message passing mechanism, for MLP
model with L layers, the intra layer optim function can be
formulated as:

Lintra =
1

L · |E|

L∑
l=1

∑
i∈V

∑
j∈Ni∪{i}

∥∥∥zli − zlj

∥∥∥2

(9)

Where zli means the representation of node vi at l-th layer.
By adding this item, the node may be closer to nodes around,
implicitly utilizing graph structure information in the
same layer.
Inter-Layer Optim Loss. FF-G2M designed two types of
loss function to capture low-frequency and high-frequency
features respectively. Our inter-layer optim loss derives from
its loss function, yet we step further by applying it into multi-
scale node groups. Briefly, we select which type of knowl-
edge to be passed to deeper layer. Corresponding to our
analysis before, we consider two situations: aggregate knowl-
edge distillation (LAKD) for similar node pairs and different
knowledge distillation (LDKD) for different node pairs.

For graph G and the corresponding node pair set group
MSG , the main idea is to treat different groups differ-
ently according to the overall feature of each group. The
mean value of its φk (namely µ̃j) is calculated for each group
(MSG(j)) firstly. The inter-layer optim loss (Linter) is de-
fined as follows. (see in Eq. 10)
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Figure 4: Overall process of Multi-Scale optim loss. (Here J = 3
for illustration.)

Ll
interj =



Ll
AKDj

=
∑

i,k∈MSG(j),
(i,k)∈E

MSE(zlk, z
l+1
i ) · |µ̃j |, µ̃j ≤ 0

Ll
DKDj

=
∑

i,k∈MSG(j),
(i,k)∈E

MSE(K(zlk, z
l
i),K(zl+1

k , zl+1
i ))

· |µ̃j |, µ̃j > 0
(10)

HereK(.) works as a kernel function to measure the distance
between two representations, and here we realize it with L1
Norm.

For Ll
interj

, which denotes the inter-layer optim loss for
l-th layer at j-scale (j ∈ {1, 2, ..., J}, l ∈ {1, 2, ..., L− 1}),
it considers two cases: If µ̃j is negative, we consider LAKD

which makes the distance closer between node pairs, other-
wise LDKD to keep the difference. The abstract value of µ̃j

reflects the extent of knowledge to be distilled.
For the last layer of MLP which also serves as the output

layer (zo), we calculate the optim function between it and the
last layer of the teacher model (ho). The formula is the same
as Eq. 10 except for zl → zo and zl+1 → ho (denote as
Lo
inter). Each layer’s inter-layer loss together makes the final
Linter (shown in Eq. 11).

Linter =
1

L · J (

L−1∑
l=1

J∑
j=1

Ll
interj +

J∑
j=1

Lo
interj ) (11)

4.4 Hierarchical Weighted Sum as MLP Output
The receptive field of GNN may expand as the layer of the
model increases and different layers will capture features to
different extent [Li et al., 2020; Zhang et al., 2022; Chen et
al., 2020b]. Thus, we utilize the weighted sum of each layer
as the output of the final layer: zo =

∑L
l=1 wizi, where {wi}i

are learnable parameters and
∑

i wi = 1.
The final format of the optim loss is the combination of the

two items: Loptim = Lintra+Linter. Here we utilize Loptim

as an appendix item for the knowledge distillation loss, and
the final loss function is the combination of the classification

loss, distillation loss and our optim loss, as is shown in Eq.
12, where γ is another hyper-parameter.

L = LCE + γ · (LKD + Loptim) (12)

5 Experiments
5.1 Experiment Setup
Datasets. We conduct our experiments on node-classification
task and select eight benchmark datasets: (1) three cita-
tion networks: Cora, Pubmed, Citeseer [Bojchevski and
Günnemann, 2017]; (2) two co-purchase networks: Amazon
Computers and Amazon Photo; (3) two co-authorship net-
works: Coauthor CS and Coauthor Physics [Shchur et al.,
2018] (4) one large graph from ogbn dataset: Ogbn-Arxiv
[Hu et al., 2020].
Baselines. For teacher models, we select three classic spa-
tial GNNs and one spectral GNN. For spatial GNNs, we se-
lect GCN [Kipf and Welling, 2016], GAT [Veličković et al.,
2017] and GraphSAGE [Hamilton et al., 2017]. We set these
models L = 3, d = 128 for layer and hidden dimension re-
spectively. For spectral GNN, we select BernNet [He et al.,
2021]. We also select two classic different distillation meth-
ods: GLNN [Zhang et al., 2021] and FF-G2M [Wu et al.,
2023a]. Code implementations of all baseline methods are
taken from their respective original papers and the best re-
sults of the mentioned distillation methods are recorded.
Experimental Settings. Our task follows the semi-
supervised node classification task [Kipf and Welling, 2016]
and the splitting ratio of the datasets is 20%/20%/60% for
train/val/test for all datasets except Arxiv, which follows stan-
dard ogbn dataset splitting. As the preprocess of the graph
requires information of whole graph, so here all the exper-
iments follow semi-supervised transductive setting, and the
datasets are split randomly and run for 10 times. We calcu-
late their mean accuracy as well as the standard deviation and
record the best result. The maximum epochs of each train-
ing process is 2000 and we utilize an early stop mechanism
with a patience of 300. For ogbn dataset, we rewrite the loss
function in Eq. 12 as Eq. 13.

L = (1− γ) · LCE + γ · (LKD + Loptim) (13)

For student model, we utilize a 3-layer MLP with a dimen-
sion of 64 for all the datasets except Arxiv. For Arxiv the
layer is 3 and the dimension is 512. We select the best model
by performing a random search on three hyper-parameters
in our method: α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, J ∈
{2, 3, 4, 5, 6, 7}, γ ∈ {0.4, 0.5, 0.6, 0.7}. We optimize
the model through Adam optimizer. The model is im-
plemented through PYG and all the experiments are con-
ducted on NVIDIA 3090s. Code can be available at
https://github.com/KamonRiderDR/MSN-GDM.

5.2 Comparison Results on Different Teachers
The results on different teacher models and different distilla-
tion methods are shown in Tab. 1. In general, the proposed
MSN-GDM significantly improves the performance of MLP,
making it outperform the given teacher models, among which
the maximum improvement in absolute accuracy is 9.71% in
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Teacher Methods Cora Pubmed Citeseer Computers Photo CS Physics

GCN

GCN 81.04 ± 0.05 84.28 ± 0.02 69.51 ± 0.06 87.95 ± 0.43 91.76 ± 0.24 88.70 ± 0.01 93.24 ± 0.39

MLP 51.83 ± 2.10 82.86 ± 0.71 52.58 ± 2.67 67.61 ± 1.54 78.58 ± 2.32 70.29 ± 2.55 85.53 ± 1.43

GLNN 83.89 ± 0.21 85.29 ± 0.03 72.70 ± 0.10 88.20 ± 0.02 92.50 ± 0.13 91.72 ± 0.62 94.53 ± 0.01

FF-G2M 85.06 ± 0.08 86.79 ± 0.13 74.83 ± 0.07 87.74 ± 0.07 93.41 ± 0.10 92.15 ± 0.07 94.91 ± 0.11

MSN-GDM 86.08 ± 0.11 87.82 ± 0.12 74.75 ± 0.15 88.94 ± 0.31 94.19 ± 0.13 93.64 ± 0.11 95.79 ± 0.08

GAT

GAT 81.19 ± 0.02 85.23 ± 0.02 70.13 ± 0.02 88.04 ± 0.09 92.58 ± 0.14 90.21 ± 0.39 93.51 ± 0.12

MLP 51.83 ± 2.10 82.86 ± 0.71 52.58 ± 2.67 67.61 ± 1.54 78.58 ± 2.32 70.29 ± 2.55 85.53 ± 1.43

GLNN 84.47 ± 0.11 87.05 ± 0.09 73.22 ± 0.75 87.74 ± 0.05 93.22 ± 0.11 93.03 ± 0.08 94.05 ± 0.01

FF-G2M 85.22 ± 0.09 87.27 ± 0.03 74.45 ± 0.31 87.96 ± 0.18 93.33 ± 0.04 92.48 ± 0.54 94.48 ± 0.06

MSN-GDM 86.13 ± 0.05 87.87 ± 0.11 76.45 ± 0.28 89.04 ± 0.22 94.62 ± 0.11 93.83 ± 0.10 95.14 ± 0.12

GraphSAGE

GraphSAGE 80.04 ± 0.03 85.62 ± 0.01 68.35 ± 0.02 86.60 ± 0.21 93.23 ± 0.13 92.13 ± 0.01 93.39 ± 0.01
MLP 51.83 ± 2.10 82.86 ± 0.71 52.58 ± 2.67 67.61 ± 1.54 78.58 ± 2.32 70.29 ± 2.55 85.53 ± 1.43

GLNN 83.34 ± 0.21 86.58 ± 0.36 76.13 ± 0.05 87.35 ± 0.47 94.93 ± 0.44 93.70 ± 0.09 90.73 ± 0.07

FF-G2M 82.87 ± 0.24 86.27 ± 0.02 76.15 ± 0.03 85.28 ± 0.71 94.38 ± 0.24 92.92 ± 0.17 91.13 ± 0.05

MSN-GDM 85.95 ± 0.17 87.77 ± 0.21 78.06 ± 0.02 87.11 ± 0.35 95.02 ± 0.14 94.50 ± 0.10 92.27 ± 0.02

BernNet

BernNet 83.84 ± 0.02 87.54 ± 0.01 71.54 ± 0.01 89.43 ± 0.02 94.80 ± 0.01 93.88 ± 0.01 95.89 ± 0.01

MLP 51.83 ± 2.10 82.86 ± 0.71 52.58 ± 2.67 67.61 ± 1.54 78.58 ± 2.32 70.29 ± 2.55 85.53 ± 1.43

GLNN 86.33 ± 0.33 88.49 ± 0.04 78.11 ± 0.16 87.44 ± 0.25 95.99 ± 0.05 94.12 ± 0.06 96.15 ± 0.03

FF-G2M 86.41 ± 0.03 87.49 ± 0.05 77.59 ± 0.02 88.06 ± 0.25 94.55 ± 0.07 93.65 ± 0.08 96.19 ± 0.05

MSN-GDM 87.22 ± 0.10 89.05 ± 0.22 78.31 ± 0.01 89.02 ± 0.28 95.63 ± 0.17 95.95 ± 0.14 96.50 ± 0.09

Table 1: Node classification results on seven real-world datasets following transductive setting. The mean accuracy and standard deviation
on 10 runs are recorded. The best results are marked in bold, and second best results are marked underline.

Citeseer with GrapgSAGE as teacher model. Moreover, com-
pared to other Graph-MLP distillation methods, MSN-GDM
achieves best or second in all the datasets. Specially, For
Cora, Pubmed and CS, MSN-GDM outperforms all the other
three models, and the maximum advantages over the second
method (GLNN) reaches 2.61% for Cora where GraphSAGE
works as the teacher model.

5.3 Comparison Results with Other Distillation
Methods

We also conduct comparison with other SOTA distillation
methods. We choose GraphSAGE (SAGE) as teacher model.
Besides from the two distillation methods above, we also se-
lect several different distillation methods: KRD [Wu et al.,
2023b], NOSMOG [Tian et al., 2022], VQGraph [Yang et
al., 2024] and SimMLP [Wang et al., 2024]. The compar-
ision experiments follow their own implementations and the
results are listed in Tab. 2. The results show the effective-
ness of MSN-GDM, no matter in small graphs (e.g. Cora,
Pubmed, Citeseer), medium graphs (e.g. Photo, CS) and large
graphs (e.g. Arxiv).

5.4 Ablation Studies
Effects of sub-modules. We first conduct our ablation
studies on the two sub-modules of MSN-GDM: hierarchical
weight sum (weight) and optim loss (optim). As is shown in
left Fig. 5, the accuracy improves with the addition of each
sub-module. Moreover, for most datasets the addition of op-
tim sub-module witnesses a larger improvement in accuracy
compared to weight sub-module. The histogram shows the
effectiveness of each sub-module in MSN-GDM.

Effects of different optim loss. Further, as our optim loss
consists of two parts namely Linter and Lintra, here we also
explore the effects of the two types of loss within Loptim,
which is shown in right Fig. 5. Discarding either type of loss
may lead to a decline in the result, which demonstrates the
effectiveness of both Lintra and Linter inside Loptim.

Cora Pubmed Computers CS
80

82

84

86

88

90

92

94

ac
cu

ra
cy

GCN
w/o optim, weight
w/o optim
w/o weight
MSN-GDM

Cora Pubmed Computers CS

84

86

88

90

92

94

ac
cu

ra
cy

GAT
w/o intra
w/o inter
MSN-GDM

Figure 5: Ablation studies on MSN-GDM. The left is on weight and
optim. The right is on Lintra and Linter for four datasets.

5.5 Sensitivity Analysis
Firstly, we conduct sensitivity analysis experiment on J
(shown in Fig. 6 (a)), where we can see that for different
datasets, the value J for best result remains different. For
dataset Cora and GCN as teacher, the best value of is 6,
while for datasets Computers it is 4. Moreover, for differ-
ent datasets, the results fluctuate differently when J changes.
For further analysis, we plot the heatmap of hyper-parameter
J and α, as the final grouping result in preproess part is de-
cided jointly by both two hyper-parameters. For different J ,
the corresponding optimal α is also different, and heatmap
can reflect the relation of the two factors. The results in Fig.
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Datasets SAGE MLP GLNN FF-G2M KRD NOSMOG VQGraph SimMLP MSN-GDM Impr.

Cora 80.04 ± 0.03 51.83 ± 2.10 83.34 ± 0.21 82.87 ± 0.24 83.54 ± 0.21 84.10 ± 0.53 84.17 ± 0.38 84.47 ± 0.14 85.95 ± 0.17 32.12↑
Pubmed 85.62 ± 0.01 82.86 ± 0.71 86.58 ± 0.36 86.27 ± 0.02 86.55 ± 0.11 86.82 ± 0.39 87.28 ± 0.42 87.19 ± 0.11 87.77 ± 0.21 4.91↑
Citeseer 68.35 ± 0.02 52.58 ± 2.67 76.13 ± 0.05 76.15 ± 0.03 77.02 ± 0.07 77.85 ± 0.13 78.03 ± 0.06 77.94 ± 0.10 78.06 ± 0.02 25.48↑
Photo 93.23 ± 0.13 78.58 ± 2.32 94.93 ± 0.44 94.38 ± 0.24 94.51 ± 0.37 94.51 ± 0.58 94.80 ± 0.19 94.05 ± 0.33 95.02 ± 0.14 16.44↑

CS 92.13 ± 0.01 70.29 ± 2.55 93.70 ± 0.09 92.92 ± 0.17 94.02 ± 0.15 93.92 ± 0.04 94.12 ± 0.11 94.31 ± 0.09 94.50 ± 0.10 24.21↑
Arxiv 70.13 ± 0.14 54.73 ± 1.12 67.76 ± 0.51 69.53 ± 0.29 69.11 ± 0.30 71.22 ± 0.15 72.14 ± 0.21 71.95 ± 0.12 72.48 ± 0.26 17.75↑

Table 2: Comparison results on different distillation methods on six datasets following transductive setting. The mean accuracy and standard
deviation on 10 runs are recorded. The best results are marked in bold, second best marked underline and third best colored in gray. The
“Impr.” column records the improvement of MSN-GDM on student models.
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Figure 6: Experiment results on different hyper-parameters, with (a) for J , (b) for (α, J) and (c) for γ.

6 (b) show that the best result lies in the middle part of α and
J (α = 0.2, J = 6). We also conduct the sensitivity analysis
experiment on the loss function coefficient γ (shown in Fig.
6 (c)). For Cora, MSN-GDM with different teacher models
has best results with different γ, and the results have a smaller
variation as γ changes.

Finally we conduct experiments on inference speed and pa-
rameters during inference time and results in Tab. 3 show
MSN-GDM’s effectiveness compared to teacher models.

Models Cora Computers
param (k) infer(ms) param (k) infer(ms)

GCN 213.13 9.22 130.26 11.66
BernNet 180.16 16.17 97.29 18.46
MSN-GDM 98.59↓ 7.03↓ 57.15↓ 9.64↓

Table 3: Parameters/inference time for teacher/student models.

5.6 Empirical Analysis
Finally, we conduct empirical analysis experiment on our
method. Corresponding to the first subsection in Methods
section, we aim to verify if the student model learned multi-
scale knowledge from teacher model. If the mean value µ̃j is
negative, then we plot MSM curve (left of Fig. 7) of its nodes
pair group, otherwise MDM curve (right of Fig. 7).

From Fig. 7, we can see that for nodes assigned to “sim-
ilar” groups (here the group is when (j = 2)), the simi-
larity value increases and is larger than other methods, indi-
cating that for similar node-set group, MSN-GDM enhances
the model’s ability to capture “similar” patterns; for nodes

assigned to “different” groups (here j = 3), the value de-
creases gradually and remains the smallest among the four
distillation methods, showing the model’s advantage in cap-
turing “different” patterns among corresponding group. The
figures of 2 cases demonstrate that our MSN-GDM is better
at capturing knowledge at different scales.
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Figure 7: Metrics curves on Pubmed (J = 4). For MSM (j = 2),
the larger, the better. For MDM (j = 3), the smaller, the better.

6 Conclusion
In this paper, we propose a GNN-MLP distillation method
that captures muti-scale knowledge among different node
pairs. We firstly design a multi-scale node pair grouping strat-
egy based on our node pair similarity metric, then a multi-
scale optim function is proposed to capture knowledge at dif-
ferent scales. Extensive experiment results demonstrate the
effectiveness of our proposed MSN-GDM. For future work,
we may explore more adaptive and more efficient grouping
methods for better distillation. We may also consider to ap-
ply it into inductive setting and more general graph tasks.
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