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Abstract

In many real applications, the data attributes are in-
cremental and the samples are stored with accumu-
lated feature spaces gradually. Although there are
several elegant approaches to tackling this problem,
the theoretical analysis is still limited. There exist
at least two challenges and fundamental questions.
1) How to derive the generalization bounds of these
approaches? 2) Under what conditions do these ap-
proaches have a strong generalization guarantee?
To solve these crucial but rarely studied problems,
we provide a comprehensive theoretical analysis in
this paper. We begin by summarizing and refining
four strategies for addressing feature incremental
data. Subsequently, we derive their generalization
bounds, providing rigorous and quantitative insights.
The theoretical findings highlight the key factors
influencing the generalization abilities of different
strategies. In tackling the above two fundamental
problems, we also provide valuable guidance for
exploring other learning challenges in dynamic envi-
ronments. Finally, the comprehensive experimental
and theoretical results mutually validate each other,
underscoring the reliability of our conclusions.

1 Introduction

In recent years, with the vast utilization of Machine Learn-
ing (ML) methods in many different applications, Statistical
Learning Theory [Weston, 2013; de Mello and Ponti, 2018],
which reveals the laws of machine learning, has attracted more
and more attention. Among the various research in Statistical
Learning Theory, generalization bound [Xu and Zeevi, 2020]
plays an important role since it is an index to measure the gen-
eralization ability of a model directly. Due to its importance,
traditional generalization theories have achieved many solid
theoretical results in supervised learning [Lei ef al., 2019;
Morvant et al., 2012; Antos et al., 2002; Li et al., 2022],
semi-supervised learning [El-Yaniv and Pechyony, 2007;
Liu and Chen, 2018; Das et al., 2013; He et al., 2021] and
unsupervised learning [Li et al., 2019; Li and Liu, 2021;
Downey et al., 2010].

Besides the above learning paradigms, we may face more
complicated scenarios. In many dynamic environment ap-

plications, the data are usually accumulated over time and
collected from open and dynamic environments. Thus, the
data attributes (features) are incremental and the samples are
stored with accumulated feature spaces gradually. For instance,
when we deploy sensors in the ecosystem to collect data, in
which the signal returned from each sensor corresponds to a
feature (old feature). With advancements in observation tech-
niques and sensor technology, new sensors are continuously
integrated, generating additional signals (new features) and
progressively expanding data feature spaces. This underscores
the critical importance of developing learning systems that
can effectively adapt to dynamic and evolving environments
[Dietterich, 2017]. In this scenario, as shown in Figure 1,
the data collection procedure is divided into two stages, i.e.,
previous and current stages. The corresponding feature spaces

include the old feature space X, Xgl) € X,,7 = 1,2 and the
new feature space Az, [Xgl), XéQ)] € X..

Under such a data background, feature increment learn-
ing [Yang er al., 2022; Gu et al., 2022; Sadreddin and
Sadaoui, 2021] has attracted wide attention and inspired a
lot of excellent works [Ye et al., 2018; Hou and Zhou, 2018;
Xu et al., 2016; Hou et al., 2019; Zhang et al., 2020;
Hou er al., 2021]. While existing feature-incremental learning
approaches have demonstrated satisfactory performance in
various applications, a comprehensive generalization analysis
remains absent. This gap arises due to two main challenges:
1) The fundamental i.i.d. assumption of traditional learning
is violated in feature-incremental scenarios, rendering con-
ventional generalization theories inapplicable. 2) The diverse
strategies employed by different approaches, such as model
reuse [Ye et al., 2018] and data tailoring [Hou and Zhou,
2018], complicate unified analysis. Consequently, although
these algorithms are intuitively reasonable, rigorous theoreti-
cal underpinnings is still limited. To gain a deep understanding
of the workings of this complex machine-learning scenario,
we focus on two fundamental questions. 1) How to derive the
generalization bounds of these feature incremental learning
approaches? 2) Under what conditions do these approaches
have a strong generalization guarantee?

Aiming at these critical but rarely-studied fundamental prob-
lems, We begin by summarizing and refining four strategies,
i.e., feature tailoring, data adaption, model reuse, and data
reconstruction. Subsequently, we derive their generalization
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Figure 1: Illustration of incremental features in a dynamic environment. In the ecosystem monitoring task, the data returned by the new sensor
(new type features) will accumulate to the previous sensor data (old type features).

bounds, providing rigorous and quantitative insights. The the-
oretical results reveal that the generalization ability of feature
tailoring depends primarily on the predictive power of the old
features, while data adaption is influenced by the sample size
and the richness of information contained in the current sam-
ple. For model reuse, the quality of the pre-trained model plays
a critical role, and for data reconstruction, the reconstruction
distribution discrepancy is the key determinant. Beyond these
theoretical findings, we validate their correctness through nu-
merical comparisons. The main contributions of this paper are
summarized as follows.

e We provide a comprehensive generalization analysis of
four model design strategies for the feature incremental
scenario, deriving their generalization bounds to offer
practical guidance for model design.

e We advance rigorous and quantitative comparisons by
analyzing the generalization ability of these strategies.
Theoretical analysis identifies key factors influencing the
tightness of their generalization bounds.

e Comprehensive experimental results corroborate the the-
oretical findings, enhancing their reliability and demon-
strating the feasibility of applying these theoretical in-
sights to model design.

2 Models
2.1 Notations

According to the scenario of this article shown in Figure. 1, the
data collection process is divided into two stages, i.e, previous
and current stages. The corresponding feature spaces include
the previous feature space X, C R? and the current feature
space X, C R%+4z Similarly, we denote the label spaces of
the two stages by ), and )., respectively. Due to the invari-
ance of classification task and label space, we consider ), and
V. to be identically distributed, denoted as Y = {+1,—1}.

Specifically, we denote the old features of the previous stage

as Xgl), the unobserved augmented features as ng), and the
label is y,. In the current stage, the feature shared by two

stages is denoted as X(l), and the augmented feature is de-
noted as XgQ), the label is y.. Here, Xgl) € Xyt = 1,2,
Xy = [Xgl), Xg)} € AX.. Without loss of generality, we
assume that the data samples in the current stage are global
observations and obey distribution D, £ X, x ). The data
points in the previous stage are local observations and obey
distribution D,, = X, x Y. To simplify the presentation, we de-
note S, = (X(ll)7 yp) as the samples of previous stage of size

ni, Se, = (Xgl), ve) as the current data of size nq that fall
into the old feature space, and S. = (X3, y.) as the samples
in current stage of size ns.

2.2 Formulations

Firstly, we summarize and refine four strategies for addressing
feature incremental problem, i.e., feature tailoring, data adap-
tion, model reuse, and data reconstruction, based on the data
application modes. The first two serve as baselines, which
transform the feature increment learning problem into a tradi-
tional learning problem. Model reuse inherit pre-trained mod-
els from previous stages by imposing consistency constraints
on corresponding local models. Finally, data reconstruction
utilizes existing observations to recover unobserved features
in the previous stage.

Subsequently, we carry out a model analysis on the four
strategies. For illustration, consider the linear classifier. De-
noted by F the hypothesis space, where each linear classifier
f:wTx + R. Consider a loss function £ : R x Y + R
non-negative and Lipschitz continuous. Correspondingly, we
denote the hypotheses under the four strategies as f;,i =
1,2, 3, 4. For the classification task, our goal is to learn a well-
generalized classifier for the current data .S, that is, minimize
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the generalization error Rp_(f). Since there is only empirical
data on hand, we optimize the R(f) as an approximation.

Lemma 1 (Generalization Error Bound). Let L be the
family of loss function associated to F, ie, L =
{x = f(x),y), f € F}. Suppose the loss function is L-
Lipschitz, then, for any 6 > 0, with probability at least 1 —
over a sample of size m, the following inequality holds for all
feF:

log(1/4)

2m

Rp(f) < Run(f) +2%R0(L) + , (M
where R, (L) is Rademacher complexity of loss function class
L associated to F, which can be bounded by using the cele-
brated Talagrand ‘s lemma [Hahn and BFb, 1976].

Model design and theoretical analysis are carried out around
the empirical error and hypothesis space complexity. Inspired
by Lemma 1, we will derive the following optimization objec-

tive
m

min =3 (%),

The first term is the empirical error, H( f) is a regularization
term used to control the complexity of the model, and a is a
trade-off parameter.

Yi) + aH(f). @

Strategy 1 (Feature Tailoring)

In the incremental feature scenario, existing classification al-
gorithms cannot be directly applied. One approach is to tailor
the features by discarding the incremental features Xf) and

training the model using only partial observations. The opti-
mization objective for this strategy is represented as

1 ni+ng )
min C(f (x5),u:) + w5,
R = SR RO R

3)
where w represents the coefficient vector corresponding to the
linear classifier f;.

Strategy 2 (Data Adaption)

Due to the inconsistent feature space dimensions between the
two stages of data, existing classification algorithms cannot
be directly applied. To address this, a data adaption approach
is adopted. Specifically, the data from the previous stage,

Xgl), is discarded. The optimization objective is formulated
as follows

. 1 ni+ns
min —
w, (X,yi)E€Se M2

O(f (xi),90) +allwls. @)

i:nl

Strategy 1 and Strategy 2 both adapt existing observations
to the algorithm, and the difference lies in the way of data
tailoring. Intuitively, both strategies are simple and convenient
to operate, but part of the valuable observations are wasted.

Strategy 3 (Model Reuse)

The core concept of model reuse is to pre-train a model wy
during the previous stage and then develop an algorithm to
train the classifier for the current stage by leveraging wy.

Specifically, we assume that the model component w! shared
between the current and previous stages remains consistent
with the pre-trained model wg. Based on this assumption, the
optimization objective for strategy 3 is formulated as follows

Ze

(xl,y»es =1

min (xi) o) e[ [w2 5 4 8w = woll,

&)
Here, w' and w? represents the vector component of w cor-
responding to Xél) and Xg), and « and /3 are two trade-off
parameters.

Strategy 4 (Data Reconstruction)
The main idea of data reconstruction is to use existing ob-

servations to reconstruct the unobserved feature X(12) in the
previous stage, and then use the reconstructed data as training
data to train model. Specifically, the learning task includes
data reconstruction and model training. Model training is the
same as strategy 1, but the data participated in the training
are different, which will not be repeated here. Next, we will
mainly discuss data reconstruction.

For demonstration and theoretical analysis, we simply build

a reconstruction function ® : X — X§2) that reconstructs

Xg2), X refers to the existing observations, and X§2) refers
to the reconstruction features that are not observed in the pre-
vious stage. In this paper, we focus on leveraging the data
correlations between the two stages and the feature correla-
tions between the old and new features within the current
stage to reconstruct the unobserved features from the previous
stage. Based on this, we design the following framework for
reconstruction functions ®

® (Xq) = argmin L(D

x(2

) + AR(F), (6)

where ) is a trade-off parameter, £(D) represents the recon-
struction loss of using data correlation to reconstruct the unob-
served features, and R (F') represents the reconstruction loss
of using feature correlation.

3 Generalization Ability Analysis

In this part, we will analyze, compare and discuss the general-
ization ability for the four strategies. First of all, we need to
introduce some basic definitions and lemmas.

Definition 1 (Rademacher Complexity [Bartlett and Mendel-
son, 2001]). Given a function class F. For a function
f € Fand a sample 7. = (Zy1,Z5,-++ ,Zy) of size m,
Z € Z = (X,)). Then, the empirical Rademacher com-
plexity of F with respect to the sample Z is defined as

m

bup—Zaf

Ry (F) = E,
ferm

)

where the random variables o; are called Rademacher vari-
ables, which obey the uniform distribution on {—1,+1}.

The Rademacher complexity of F is the expectation of em-
pirical Rademacher complexity based on the experience of all
samples of size m drawn by D

R (F) = Ezmpm [Ra(F)] ®)
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Definition 2 ()-Discrepancy [Mohri and Medina, 2012]). Let
Dp,Dq be two distributions over X and denote by yp,yq
the labeling functions over Dp and Dg, respectively. Given a
hypothesis class F and the corresponding loss function ¢, the
Y-discrepancy between (Dp,yp) and (Dq,yq) is defined as

dzscy (Spa, SQ) = lscug ’RDP (f7 yp) — RDQ (f, yQ)‘ .
fe
€))

As we only have the empirical data on hand, by introducing
weights o over the empirical data Sp sampled from Dp, and
thus the weighted empirical risk is defined as

) 1 &
Rs, = - ;aif(f(xi%ym),

the weighted empirical Y-discrepancy is denoted by

diSCy (SPQ7SQ) = sup RSP(X (fa yP) - RSQ (fa yQ) .

fer
(10)
With the definition of weighted empirical Y-discrepancy, the
generalization error on (Dg,yq) can be bounded in terms of
the risk over (Dp,yp) and their Y-discrepancy.

Subsequently, we carry out a generalization theoretical anal-
ysis of the four strategies. As for the baseline strategies fea-
ture tailoring and data adaption, the generalization bounds
are similar to Lemma 1. The difference between the two
strategies lies in the form and amount of participating training
data. Specifically, comparing the generalization bounds of the
two strategies, we take a simple example as illustration. As
shown in Figure 2, consider a binary classification task with
Y ={+1,—1} and let d = 2. We can see that using any local
Feature 1 or Feature 2 does not work well for this classification
task, since the trained model is underfitting. Correspondingly,
the right of Figure 2 shows the generalization error curves of
the model trained with local and global features, respectively.

It can be found that the key factors dominating the gen-
eralization ability of feature tailoring and data adaption are
the quality of old features and the number of data samples,
respectively. This conclusion is straightforward and intuitive,
so we will not elaborate further. We next derive generalization
error bounds for strategies 2 and 3. Due to space limitations,
the details of the proofs are list in the supplementary file.

Theorem 1. Let F5 be the family of the hypothesis set, and
denote the hypothesis returned by data adaption as fs. Sup-
pose the loss function is L-Lipschitz, then, for any § > 0,
with probability at least 1 — § over a sample of size no, the
Jfollowing inequalities hold for all fo € Fo.

- 1 log(1/6)
R <R 2L———AM. —_—.
D, (f2) < Ry, (f2) + NG 2+ T
Where A = max {||x|| |x € X'} represents the radius of the
feature domain, and ||ws|| < Ms, My represents the radius
of the linear hypothesis space. Wo represents the hypothesis
coefficient corresponding to the linear classifier fo.

11

Theorem 2. Let F3 be the family of the hypothesis set, and
denote the hypothesis returned by model reuse as fs. Suppose

Feature 2
Test Error

Feature 1

Sample Size

Figure 2: Illustration of the generalization ability of Strategy 1 versus
Strategy 2.

the loss function is L-Lipschitz, then, for any § > 0, with
probability at least 1 —§ over a sample of size no, the following
inequalities holds for all f3 € F3,

log(1/9)

Rp, (f3) <R, (f3) + 2

+ 2L\/152A (= + VM2 = (Mo - 5)2212)

Here, A = max {||x|| |x € X'} represents the radius of the
feature domain, and ||ws|| < Ms, Ms represents the radius of
the hypothesis space. ws represents the hypothesis coefficient
corresponding to the linear classifier fs. ||wo| = Mo, wo
represents the coefficient vector corresponding to the linear

classifier pre-trained by (Xgl),yl). ||W§ — WOH <e wl
represents the vector component of Ws corresponding to wy.

As shown in Theorems 1 and 2, the bounds differ from the
standard generalization bound as the Rademacher complexity
is concretized using the Frobenius norm of matrices. In this
way, we can compare the generalization bounds of data adap-
tion and model reuse. Comparing the generalization bounds of
f2 and f3, it can be observed that the tightness of the general-
ization bound is largely influenced by the second term, which
corresponds to the Rademacher complexity of the hypothesis
space. Therefore, our analysis primarily focuses on compar-
ing this term. In our setting, the current stage feature space
retains the old features from the previous stage. Therefore, the
classification coefficient w( pretrained by the previous stage
data should be inherited. It can be obtained that w3 is in the
e-neighborhood of wo, that is, |[w} — wy|| < e,and e < M.
Besides, compared to F, the hypothesis function space F3
has been constrained due to the adding of ||w3} — wo H; Thus,
it is natural to assume that M3 < M. With these mild as-
sumptions, we have the following corollary.

Corollary 1. Assume that |w}—wol < e Mz =

pMy with p > 1 and Ms < M. When ¢ <
%(p%—l— (p+ 1)2—2> My, we have
e+ v/ (M3)2 — (My — )2 < M. (13)

Theorem 1 and Theorem 2 give the generalization error
bounds of the hypothesis trained by data adaption and model
reuse. Corollary 1 compared the two generalization upper
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Strategies \ Main parts \ Key factors
Feature Tailoring Rn1+n2 (f1) Old features’ predictive power
data adaption 2L \/%AMQ Sample size ny and the contained information richness
Model Reuse fﬁ—A (0 + /(M3)2 — (Mo — a)2> Pre-trained model quality
o

Data Reconstruction

discy (Spa , Sc)

Reconstruction distribution discrepancy

Table 1: The main parts of generalization bounds of four strategies.

bounds. It can be concluded that the empirical error is a good
approximation of the generalization error as the training data
tends to infinity. In addition, the generalization error upper
bound of fs is tighter. In intuitive, model reuse reduces the
size of the hypothesis space, since w3 is restricted in the -
neighborhood of w(. Therefore, we know that the key factor
in dominating the generalization ability of the model reuse
is the quality of the pre-trained model, that is, the higher the
quality of the pre-trained model, the smaller the value of € and
the tighter the generalization bound.

Theorem 3. Let F, be the family of hypothesis set, and denote
the hypothesis returned by data reconstruction as fy. Suppose
the loss function is L-Lipschitz, then, for any § > 0, with
probability at least 1 — § over a sample S’p of size n1 and a
sample S, of size na, the following inequality holds for all
f1 € F4 and any weighted empirical distribution distribution
D, over the sample Sy, and current distribution D, over the
sample S..

Ro, (fi,ye) < ARg, (f1,9p) + (1= N Rs. (f1,yc)

. 5 log(1/6)
+ )\dZSC)} (Spa 5 Sc) + 2Lm(n1 - n2)(f4) =4 m
(14)
Here, D, represents the distribution of the reconstructed pre-

vious stage da{a [Xgl), ng)]’ and Sp represents the samples

sampled from D). D, represents the distribution of the current
stage data, which is the same as the test data distribution, and
S, represents the samples sampled from D.. \ represents the

ratio of samples S, and S..

According to Theorem 3, we know that the generalization
ability of data reconstruction is mainly affected by the dis-
tribution discrepancy between the reconstructed data and the
current stage data, which is directly related to the performance
of the reconstruction function. By observing, a small distribu-

tion discrepancy discy (Spa , SC) leads to a hypothesis with

a tighter generalization error bound and inspires us to con-
sider the distribution discrepancy between the reconstructed
data and the observed data when designing the reconstruction
function. It should be emphasized that data reconstruction is
an independent and arduous task. In this paper, we present a
demonstration of designing the reconstruction function based
on optimal transport and feature correlation. In summary,
we know that the key factor in dominating the generalization
ability of the data reconstruction is the reconstruction distri-
bution discrepancy, which plays a key role in the design of

reconstruction functions.

Finally, Table 1 summarizes the generalization bounds of
the four strategies: feature tailoring, data adaptation, model
reuse, and data reconstruction. The main parts of the general-
ization bounds highlight the key factors influencing general-
ization ability. Illustration 2 compares the generalization per-
formance of feature tailoring and data adaptation. It reveals
that the primary factor for feature tailoring is the predictive
power of the old features, while for data adaptation, it is the
number of data samples. Corollary 1 contrasts the generaliza-
tion bounds of data adaptation and model reuse, identifying
the quality of pre-trained models as the critical determinant for
model reuse. Theorem 3 examines the generalization ability of
data reconstruction, concluding that its effectiveness hinges
on the reconstruction distribution discrepancy, which is closely
tied to the design of the reconstruction function.

4 Mutual Verification Experiments

In this section, soft margin SVM [Cortes and Vapnik, 1995]
and logistic regression (LR) [Berger er al., 1996] are applied
as demonstrations, aiming to form mutual verification through
experiments and theories. Due to space limitation, the opti-
mization objectives and detailed implementation information
of the four strategies are provided in the supplementary mate-
rials.

4.1 Datasets and Setting

We adopt 8 datasets from UCI Repository ' and LIBSVM
Library 2 to carry out the experiments. As in the feature incre-
ment scenario mentioned in this paper, the data collection pro-
cess is divided into two stages. Specifically, the global feature
of the existing data is denoted as X = [X1,...  X©+d2] C
R%+d> where X?,i = 1,2,---,d; + ds is the i-th feature.
Let X :d[Xl, -+, X4] C R% be the previous feature and
X = [XH ... Xditdz] C Reitd2 pe the current feature.
Furthermore, to obtain the data type that conforms to the sce-
nario in this paper, we tailor the existing binary classification
data. Without loss of generality, we let d; = dy. Similarly,
let no = n1/2 be the amount of data in the previous stage.
As for the parameters selection of the algorithms, we con-
duct K-fold cross-validation on the training set. Specifically,
we use the grid search method to obtain the optimal param-
eter combination, and the search range of each parameter

"http://archive.ics.uci.edu/ml
“http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Dataset Strategy Acc AUC F1-Score
Feature Tailoring 0.6706+0.0046 0.6854--0.0047 0.7575+0.0038
onosphere data adaption 0.7013-+0.0029 0.732640.0043 0.77484-0.0035
p Model Reuse 0.7226+0.0031 0.743140.0042 0.8236+0.0025
Data Reconstruction 0.7422+0.0032 0.7561-0.0022 0.8431--0.0041
Feature Tailoring 0.608310.0034 0.5325+0.0046 0.5657+0.0056
cleve data adaption 0.621140.0056 0.5256+0.0032 0.6012+0.0035
Model Reuse 0.6647+0.0034 0.5494--0.0043 0.6674--0.0046
Data Reconstruction 0.581640.0036 0.5005+0.0042 0.5544+0.0035
Feature Tailoring 0.516310.0053 0.597110.0042 0.648310.0035
. data adaption 0.6734+0.0042 0.6544+0.0026 0.7637+0.0035
coviype Model Reuse 0.7013+0.0038 0.6636-+0.0032 0.8019-£0.0045
Data Reconstruction 0.5236+0.0041 0.603740.0032 0.6510+0.0065
Feature Tailoring 0.7060+0.0036 0.4736+0.0032 0.4968+0.0025
erman data adaption 0.7386+0.0041 0.6034+0.0032 0.5477+0.0026
g Model Reuse 0.7642+0.0051 0.6833-0.0062 0.5733+0.0045
Data Reconstruction 0.6833+0.0034 0.4621+0.0022 0.4708+0.0041
Feature Tailoring 0.7437+0.0026 0.539310.0024 0.697610.0035
heart data adaption 0.8133+0.0043 0.7864+0.0032 0.8196+0.0036
Model Reuse 0.8300--0.0069 0.8163+-0.0032 0.8243-0.0046
Data Reconstruction 0.7755+0.0040 0.7495+0.0069 0.7685+0.0045
Feature Tailoring 0.70600.0043 0.6319-0.0043 0.7318-0.0048
L data adaption 0.747140.0054 0.6842-40.0054 0.8548+0.0034
acug Model Reuse 0.7880--0.0039 0.7134--0.0039 0.8609--0.0032
Data Reconstruction 0.7123+0.0047 0.6903+0.0047 0.8234+0.0045
Feature Tailoring 0.7627+0.0034 0.758510.0042 0.6351-0.0041
Ivs] data adaption 0.782740.0044 0.7735+0.0032 0.702140.0034
Model Reuse 0.80274-0.0051 0.7923--0.0034 0.73214-0.0024
Data Reconstruction 0.771740.0034 0.7635+0.0046 0.683140.0046
Feature Tailoring 0.6954+0.0041 0.577110.0032 0.7126+0.0035
e V kol data adaption 0.7064+0.0038 0.6023+0.0031 0.7356+-0.0039
-VXP Model Reuse 0.7664--0.0048 0.6634--0.0054 0.7826-+0.0035
Data Reconstruction 0.6864+-0.0038 0.5823+0.0032 0.7156+0.0043

Table 2: Comparative experiment results (“1”")(mean=std) of SVM model under the four strategies. The best results on each dataset are bolded.

covtype —— Feature Tailoring covtype Feature Tailoring
— T —_— B
—— Data Adaptation I —— Data Adaptation
ge n Model Reuse ge n Model Reuse

—— Data Reconstruction —— Data Reconstruction

hea*t nq' sphere heaft qsphere
‘.‘ /. N\ /
Lac kpl Lac . kpl
TvsT vl
(a) ACC (b) Fl1_score

Figure 3: Comparative experiment results (“1”")(mean=std) of LR model under the four strategies.
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Figure 4: Incremental process experiment results (‘“1””)(mean=std) of two models under the four strategies.

is [1072,1072,107",10°,10", 10, 10%]. Finally, three com-
mon metrics, Accuracy, F1-score, and AUC, were used to eval-
uate the model performance, and the higher the values of these
metrics, the better the performance of the algorithms(’1”).
Additionally, we also conducted experiments on several real-
world multi-view datasets. Due to space constraints, the exper-
imental results are presented in the supplementary materials.

4.2 Comparative Experiment

In this subsection, we conduct experiments to verify the va-
lidity of the above theoretical conclusions. The comparative
experiment results are shown in Table 2 and Figure 3. Ac-
cording to the experiment results, it can be concluded that
data adaption performs better than feature tailoring in general,
which is consistent with the intuition, that is, the model ob-
tained from feature tailoring could be underfitting. In addition,
the model performance of model reuse has certain advantages
over data adaption, which is consistent with the conclusion of
Corollary 1, that is, the generalization error bound for model
reuse is tighter than data adaption. As for data reconstruction,
the performance of the model is unstable and generally worse
than model reuse, since the reconstruction function cannot
effectively reduce the distribution discrepancy between the

reconstructed data and the observations without prior distribu-
tion information about the data. In particular, data reconstruc-
tion will perform well when the potential data distribution
relatively matches the reconstruction function, such as for the
dataset ‘ionosphere’. That is to say, data reconstruction can
achieve good generalization ability only when the distribution
discrepancy between the reconstructed data and the observa-
tions is sufficiently small. This requires incorporating more
prior distribution information to construct the reconstruction
function.

4.3 Numerical Verification Experiment

In order to verify Corollary 1 numerically, we calculated the
numerical value of each variable in Corollary 1 and combined
with the condition for comparative verification. Specifically,
we further analyze the e-neighborhood. Denote f, as the
empirical optimal classifier trained by strategy 3, and w, as
the corresponding coefficient. Let w = [wo, w?2] be the

coefficient corresponding to f . Due to the optimality of the
empirical objective at w,, we have
- 2 2
Baa (f2) + || wEl|p + B [ wi = wol|,

o (15)
< By (f) + | w2

2 2
F + ﬁ ||WO - WOHF
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Figure 5: The numerical values of €, A and M, produced by the
experiments on 8 datasets.

then )
It = wolly < 5 (R () — R (1)
vt = wall < /5 (Rus) — (1))
Let

1
A= 2<p+1— (p+ 1)2—2> Mo,
we compare the numerical values of €, A and M, produced
by the experiments. The experimental results are shown in
Figure 5. From the experimental results, it can be seen that

the condition ¢ < 2 <p +1—4/(p+1)°— 2> My is always
satisfied.

4.4 Impact of Incremental Features

To investigate the effect of incremental features on model
performance, we conducted experiments by progressively in-
creasing the number of incremental features from 0 to do.
Specifically, we selected ds/3, 2d3/3, and d» as representa-
tive points to illustrate performance trends. Results in Figure
4 reveal the following: (1) Feature tailoring performance de-
pends only on the observed features from the previous stage.
(2) For data adaptation and model reuse, performance gener-
ally improves with more incremental features, as additional
features provide more information, alleviating underfitting.
(3) In contrast, data reconstruction shows inconsistent perfor-
mance, with degradation on some datasets due to increased
reconstruction complexity as the feature count grows.

5 Conclusion

In this paper, we focus on the feature increment learning prob-
lem, for which theoretical analysis is still limited. To gain a

deep understanding of the workings of this complex machine
learning problem, we first summarize and refine four strate-
gies, i.e., feature tailoring, data adaption, model reuse, and
data reconstruction, based on the data application modes. Fur-
thermore, we carry out research on the generalization theory
of these four typical strategies in feature incremental scenarios.
Specifically, we propose a common procedure and analyze the
generalization ability of these four common data application
strategies, and make a horizontal comparison of them to derive
rigorous and quantitative conclusions. In addition, a series
of experiments prove that the theory in this paper is effective,
which is helpful to guide the model design through the theory.
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