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Abstract

Label Distribution Learning (LDL) has been suc-
cessfully implemented in numerous practical appli-
cations. However, the imbalance in label distri-
butions presents a significant challenge due to the
substantial variation in annotation information. To
tackle this issue, we introduce Decoupled Imbal-
ance Label Distribution Learning (DILDL), which
decomposes the imbalanced label distribution into
a dominant label distribution and a non-dominant
label distribution. Our empirical findings reveal
that an excessively high description degree of dom-
inant labels can result in substantial gradient infor-
mation attenuation for non-dominant labels during
the learning process. Therefore, we employ the de-
coupling approach to balance the description de-
grees of both dominant and non-dominant labels
independently. Furthermore, we align the feature
representations with the representations of domi-
nant and non-dominant labels separately, aiming to
effectively mitigate the distribution shift problem.
Experimental results demonstrate that our proposed
DILDL outperforms other state-of-the-art methods
for imbalance label distribution learning.

1 Introduction
Label Distribution Learning (LDL) [Geng, 2016] aims to es-
tablish a mapping from an instance to a label distribution,
which encompasses a specific set of labels and indicates the
degree to which each label describes the instance. LDL has
been shown to be an effective approach to address the issue
of label ambiguity [Wang and Geng, 2019; Kou et al., 2024b;

∗Corresponding Author
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Figure 1: (a) indicates a balanced distribution, (b) indicates an im-
balanced distribution, and (c) provides an example of decoupling the
imbalanced label distribution. After decoupling, the description de-
grees of non-dominant labels can be enhanced in the LDL process.

Wang et al., 2024]. The underlying mechanism of label dis-
tribution mapping has also attracted significant research at-
tention [Shen et al., 2017; Lu and Jia, 2024; Li et al., 2024].
LDL has been successfully applied to numerous practical sce-
narios and learning paradigms, including expression analy-
sis [Le et al., 2023], video parsing [Gao et al., 2021; Zhang
et al., 2023], age estimation [Smith-Miles and Geng, 2020;
Zhang et al., 2021], image captioning [Yang et al., 2023],
beauty sense [Xie et al., 2015; Ren and Geng, 2017], few-
shot learning [An et al., 2024], multi-label learning [Wang
and Geng, 2024; Kou et al., 2024b], and partial label learning
[Xu et al., 2023], big model [Peng et al., 2025], etc.

LDL directly addresses the deeper and more ambiguous
question: ”How much does each label describe the instance?”
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In other words, it considers the relative importance of each
label in describing the instance. The effectiveness of LDL
hinges on the relatively balanced nature of the description de-
grees, with generally small differences among them, enabling
the use of more balanced supervision information to train the
LDL model. However, achieving highly balanced descrip-
tion degrees is quite challenging in practical applications due
to the significant subjectivity involved in annotating the label
distribution. For example, when training a score distribution
model for movies [Geng and Hou, 2015], obtaining an ide-
ally balanced emotional distribution like Fig. 1(a) requires
hundreds or even thousands of annotators to label the same
movie. Yet, due to limitations such as insufficient numbers of
annotators, varying backgrounds, ages, subjective opinions,
annotation noise, etc., it is common for the score distribution
to become imbalanced, as shown in Fig. 1(b). The dominant
scores occupy an excessively large descriptive space, leaving
very little space for the non-dominant labels. The excessive
variance among these description degrees can severely im-
pact the performance of label distribution learning in solving
practical problems [He and Garcia, 2009; Wu et al., 2020;
Oh et al., 2022; Fu et al., 2024]. This newly emerging and
challenging scenario is defined as Imbalanced Label Distri-
bution Learning (ILDL) [Zhao et al., 2023b]. RDA [Zhao et
al., 2023b] uncovers the underlying reason behind the perfor-
mance degradation of imbalanced distribution learning from
an alignment perspective. RDA asserts that existing LDL
methods incorrectly assume that the consistency between the
feature distributions of the training set and the test set is in-
valid. Consequently, RDA introduces a two-phase alignment
approach.

Both LDL-HR [Wang and Geng, 2021b] and DKD [Zhao
et al., 2022] methods demonstrate that non-dominant labels
can either enhance model generalization or transfer implicit
knowledge. However, RDA solely focuses on enhancing
the representation capabilities of the feature space and label
space from a representation alignment perspective, without
addressing the issue of excessive attenuation of non-dominant
labels in LDL model learning due to the over-representation
of dominant labels.

To solve the above issue, we propose a novel method
named Decoupled Imbalanced Label Distribution Learning
(DILDL). This method decouples the imbalanced label dis-
tribution into dominant and non-dominant label distributions.
Specifically, we divide the label distribution learning process
into two levels: (1) prediction of description degrees for dom-
inant labels and (2) prediction of description degrees for non-
dominant labels. Based on this division, we reformulate the
LDL loss into two components, as illustrated in Figure 1(c).
Despite the inherent imbalance in the initial label distribu-
tion, our decoupling methodology successfully establishes an
equilibrium in the description degrees between dominant and
non-dominant label distributions. After decoupling, the de-
scription degrees of non-dominant labels become indepen-
dent of those of dominant labels, eliminating the need for
their concurrent learning. From the perspective of gradient
analysis, we demonstrate that decoupling can enhance the
learning of gradient information related to non-dominant la-
bels.

The overall framework of the proposed decoupled imbal-
anced label distribution learning (DILDL) is shown in Figure
2. We utilize the DILDL loss to learn the mapping from in-
stances to label distributions in the first branch of the decoder
Fθ. More importantly, DILDL also decouples the label distri-
bution during the representation distribution alignment stage.

Our contributions can be summarized as follows:
• We propose a decoupled method to address the issue of

excessive emphasis on dominant labels, which leads to
excessive attenuation of non-dominant labels in imbal-
anced label distribution learning.

• We prove that the decoupled approach in ILDL can fur-
ther enhance the implicit knowledge of non-dominant la-
bels from a gradient analysis perspective.

• We conduct extensive experiments to demonstrate the
effectiveness of the proposed Decoupled Imbalanced
Label Distribution Learning (DILDL), and our method
achieves state-of-the-art performance.

2 Related Work
Label Distribution Learning. Label distribution learning
(LDL) was first proposed by [Geng, 2016], and it has been
successfully applied to ambiguous tasks. For example, [Geng
and Hou, 2015] formulated movie scores from multiple anno-
tators as a score distribution and simultaneously fit a sigmoid
function to each component of the score distribution using
a multi-output support vector machine. LDL-ALSG [Chen
et al., 2020] was proposed to address the facial expression
recognition using the topological information of labels from
related but more distinct tasks. The underlying assumption of
LDL-ALSG is that facial images should have similar expres-
sion distributions to their neighbors in the label space of ac-
tion unit recognition and facial landmark detection. More re-
cently, [Le et al., 2023] leveraged neighborhood information
in the valence-arousal space to adaptively construct emotion
distributions for training samples, taking into account the un-
certainty of provided labels when incorporating them into the
label distributions to solve the facial expression recognition
problem. Additionally, LDL has been applied to age estima-
tion [Zhang et al., 2021], image sentiment analysis [Yang et
al., 2017a; Yang et al., 2017b], text classification [Zhao et
al., 2023a], and other areas. Beyond its contributions across
various application areas, LDL can further enhance the per-
formance of other machine learning paradigms. For example,
[Kou et al., 2024b] introduced an auxiliary multi-label learn-
ing (MLL) process in LDL to capture low-rank label corre-
lation on that MLL rather than LDL, justifying the advan-
tages of exploiting low-rank label correlation in the auxiliary
MLL through LDL. LDL-FCC [Wang et al., 2024] was de-
signed to explore fuzzy membership-induced correlation and
to jointly realize fuzzy clustering and label correlation learn-
ing via LDL. However, as analyzed in [Zhao et al., 2023b],
previous LDL methods ignored the imbalance problem in la-
bel distribution and did not consider the distribution gap be-
tween the training set and test set.

Imbalance Label Distribution Learning. Imbalanced
learning is a pressing topic that arises from the long-tail dis-
tribution of data. Under-sampling and over-sampling are two
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Figure 2: To achieve decoupled representation distribution alignment, we design the decoupled representation to conduct distinct represen-
tation learning for both dominant and non-dominant labels. Following this, we undertake the alignment of the Gaussian distribution of the
feature representations with the Gaussian distributions corresponding to the dominant and non-dominant labels, respectively.

of the most popular approaches to tackle the long-tail recog-
nition problem [Byrd and Lipton, 2019; Buda et al., 2018;
Ghosh et al., 2024]. [Soltanzadeh et al., 2023] addresses the
imbalance issue by presenting an under-sampling approach
based on a metaheuristic method, where the under-sampling
problem is formulated as an optimization problem. The pro-
posed method aims to select an optimal subset of majority
samples to handle both the imbalance and class-overlap prob-
lems simultaneously, while avoiding excessive elimination
of majority samples. Apart from imbalanced classification,
imbalanced regression has also garnered significant attention
in recent years [Yang et al., 2021; Wang and Wang, 2024;
Liu et al., 2023]. VIR [Wang and Wang, 2024] borrows data
with similar regression labels to compute the variational dis-
tribution of latent representations, predicts the entire normal-
inverse-gamma distributions, and modulates the associated
conjugate distributions to probabilistically re-weight the im-
balanced data. However, both imbalanced classification and
imbalanced regression focus on identifying imbalances at
the label end. The uniqueness of imbalanced label distri-
bution learning (ILDL) lies in the fact that each label is ac-
companied by a continuous description degree [Geng, 2016;
Kou et al., 2024a; Wang and Geng, 2019]. Consequently,
traditional imbalanced classification and imbalanced regres-
sion methods cannot be directly applied to ILDL. To address
this, RDA [Zhao et al., 2023b] introduced the first special-
ized ILDL algorithm, which aligns the distributions of feature
representations and label representations to bridge the gap be-
tween the training set and test set caused by imbalance. How-
ever, RDA does not effectively address the issue of excessive
attenuation of non-dominant labels in ILDL model learning.

3 Approach
Inspired by LDL-HR [Wang and Geng, 2021b], AEKT [Park
and Lee, 2024], and DKD [Zhao et al., 2022], we reformu-
late the ILDL loss as a weighted sum of two components: one
representing the distribution of dominant labels and the other
representing the distribution of non-dominant labels. Addi-
tionally, we integrate our decoupled method into the RDA
[Zhao et al., 2023b] framework. Decoupling is implemented
for dominant and non-dominant labels during both the label

distribution prediction and representation alignment stages.

3.1 Decoupled the Label Distribution
Assume fθ(·) is the mapping function from the instance space
X to the label distribution space Y . The objective function of
LDL is to minimize the difference of the ground truth and
predicted label distribution. The Kullback-Leibler (KL) di-
vergence is the most common used loss function. Therefore,
the objective function can be written as,

LLDL =
n∑

i=1

c∑
j=1

d
yj
xi ln

d
yj
xi

f j
θ (xi)

, (1)

where d
yj
xi is the groundtruth of the description degree. To

start, we decouple the distribution of dominant label. Specif-
ically, for each instance x, the distribution of dominant label
is defined as D̄x = [d̄y1

x , d̄y2
x , ..., d̄yc

x ]T , where d̄
yj
x is defined

by

d̄
yj
x =

{
1 if yj = yx,

0 otherwise,
(2)

where yx is the label with the highest description degree, the
decoupled distribution assigns a description degree of 1 to the
dominant label and 0 to all other labels. According to the def-
inition of LDL, the label distribution satisfies two constraints,
i.e. d

yj
xi ∈ [0, 1] and

∑c
j=1 d

yj
xi = 1, the distribution of

non-dominant labels is defined as D̂x = [d̂y1
x , d̂y2

x , ..., d̂yc
x ]T ,

where d̂
yj
x is defined by

d̂
yj
x =


0 if yj = yx,

exp(d
yj
xi)/

c∑
j=1,yj ̸=yx

exp(d
yj
xi) otherwise,

(3)
Therefore, Eq. (1) can be re-written as,

LDILDL = αKL([d̄
yj
xi , d̂

yj
xi ]||[d̄′

yj

xi
, d̂′

yj

xi
])+(1−α)KL(D̂||f̂θ),

(4)
where α is the trade-off parameter to balance the decoupled
label distributions. f̂(·) is the decoupled prediction of non-
dominant labels. d′ is the predicted description degree.
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The first term of Eq.(4) for the distribution of the dominant
label can be written as,

LDDL = d̄
yj
xi(log d̄

yj
xi − log d̄′

yj

xi
) + d̂

yj
xi(log d̂

yj
xi − log d̂′

yj

xi
),

(5)
Follow the gradient calculation method in AEKT [Park and
Lee, 2024], the gradient of LDDL with the logit zki of the
dominant label yx can be calculated as follows,

∂LDDL

∂zki
=

∂LDDL

∂d̄′
yk

xi

∂d̄′
yk

xi

zki
+

∂LDDL

∂d̂′
yk

xi

∂d̂′
yk

xi

zki

=

(
−

d̄yk
xi

d̄′
yk

xi

)
(d̄′

yk

xi
− (d̄′

yk

xi
)2) +

(
−

d̂yk
xi

d̂′
yk

xi

)
(−d̄′

yk

xi
· d̂′

yk

xi
)

= d̄′
yk

xi
− d̄yk

xi
,

(6)
The gradient of LDDL with the logit zji of the non-dominant
label yj can be calculated as follows,

∂LDDL

∂zji
=

∂LDDL

∂d̄′
yk

xi

∂d̄′
yk

xi

zji
+

∂LDDL

∂d̂′
yk

xi

∂d̂′
yk

xi

zji

=

(
−

d̄yk
xi

d̄′
yk

xi

)
(−d̄′

yk

xi
· d̄′yj

xi
) +

(
−

d̂yk
xi

d̂′
yk

xi

)
(d̄′

yj

xi
− d̂′

yk

xi
d̄′

yj

xi
)

=

(
1−

d̂yk
xi

d̂′
yk

xi

)
d̄′

yj

xi
,

(7)
The second term of Eq. (3) can be re-formulated as,

LNDDL =

c∑
j=1,yj ̸=yx

d̂
yj
xi(log d̂

yj
xi − log d̂′

yj

xi
), (8)

The gradient of LNDDL with respect to the logits zji of
non-dominant labels yj is calculated by,

∂LNDDL

∂zji
=

c∑
m=1ym ̸=yx

∂LNDDL

∂d̂′
ym

xi

∂d̂′
ym

xi

∂zmi

=
∂LNDDL

∂d̂′
yj

xi

∂d̂′
yj

xi

∂zji
+

c∑
m=1,m ̸=j

∂LNDDL

∂d̂′
ym

xi

d̂′
ym

xi

∂zji

=

(
− d̂

yj
xi

d̂′
yj

xi

)
(d̂′

yj

xi
− (d̂′

yj

xi
)2)

+
c∑

m=1,m ̸=j

(
−

d̂ym
xi

d̂′
ym

xi

)
(−d̂′

ym

xi
· d̂′

yj

xi
)

= d̂′
yj

xi
− d̂

yj
xi

=
1

d̂′
yk

xi

d̂′
yj

xi
− 1

d̂yk
xi

d̂
yj
xi ,

(9)
In summary, multiplying the decoupled gradients by the bal-
anced parameter α and β can yield the gradients for dominant
labels and non-dominant labels,

∂LLDL

∂zki
= α(d̄′

yk

xi
− d̄yk

xi
), (10)

∂LLDL

∂zji
=

{
α

(
1−

d̂yk
xi

d̂′
yk

xi

)
+

β

d̂′
yk

xi

}
d̄′

yj

xi
− β

d̂yk
xi

d̄
yj
xi .

(11)
Based on the gradient analysis of the distributions of dom-
inant and non-dominant labels, we can draw the follow the
two conclusions:

• When the label distribution is very imbalance, i.e. the
margin between d̄yk

xi
and d̂yk

xi
is very large, as shown in

Eq. (11), the imbalance in label distribution can cause
the LDL model to overly focus on dominant labels, lead-
ing to a small description degree d̄

yj
xi for non-dominant

labels (the second term in Eq. (11)), the gradient of the
non-dominant labels ∂LLDL/∂z

j
i can be still delivered

during the learning process since the β gives an indepen-
dent balance for the distribution of non-dominant labels.

• As shown in the first term in Eq. (11), when the pre-
dicted label distribution d̂′

yk

xi
is large from the ground

truth d̂yk
xi

, the weight for the predicted label distribution
of the non-dominant labels d̂′

yj

xi
will be reduced, which

will further address the issue of excessive losses result-
ing from inaccurate label distribution prediction during
the learning process.

3.2 Decoupled Representation Distribution
Alignment

RDA [Zhao et al., 2023b] asserts that aligning the distribu-
tions of feature representations and label representations can
narrow the distribution gap between the training set and test
set, which is often exacerbated by the imbalance issue. In-
spired by RDA [Zhao et al., 2023b], we introduce the decou-
pled representation alignment approach to carry out distinct
representation learning for both dominant and non-dominant
labels.

As depicted in Figure 2, we design feature and label en-
coders to learn the representations of instances and label dis-
tributions, respectively. Specifically, the label distribution en-
coder consists of three branches, with two branches specifi-
cally dedicated to learning the representations of dominant
and non-dominant labels.

The Central Limit Theorem as well as the information-
theoretic state that the sum/mean of many independent ran-
dom variables approximates a Gaussian distribution under
suitable conditions and the Gaussian distribution has maxi-
mum entropy, making it the most ”uncertain” (least assum-
ing) distribution for data. Consequently, without specific dis-
tribution info, Gaussian is the default for label-feature align-
ment. Assuming that the distributions of features and labels
adhere to Gaussian distributions, we utilize the KL diver-
gence to align the decoupled label information with the fea-
ture representation of the model.

Lalig1 = −1

2

I∑
i=1

[
log v

(i)
DDL − v

(i)
DDL − τ

(i)
DDL + 1

]
, (12)

where v
(i)
DDL =

σ
(i)2

feature

σ
(i)2

DDL

, τ (i)DDL =

(
µ
(i)
feature−µ

(i)
DDL

)2

σ
(k)2

DDL

, i rep-
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resents the i-th element of the latent space. Similarity,

Lalig2 = −1

2

I∑
i=1

[
log v

(i)
NDDL − v

(i)
NDDL − τ

(i)
NDDL + 1

]
,

(13)

where v
(i)
NDDL =

σ
(i)2

feature

σ
(i)2

NDDL

, τ (i)NDDL =

(
µ
(i)
feature−µ

(i)
NDDL

)2

σ
(k)2

NDDL

.

To further align the distributions of feature representations
and label representations, following RDA [Zhao et al.,
2023b], we use the reparameterization trick [Rezende et
al., 2014] to calculate the similarity of features and labels.
For the labels: rlabelDis = µwhole + σwholeδwhole, where
µwhole and σwhole are calculated from the whole label en-
coder. δwhole ∼ N (0, I). For the features: rfeature =
µfeature + σfeatureδfeature, where µfeature and σfeature

are calculated from the feature encoder. δfeature ∼ N (0, I).
The alignment-3 is defined as,

Lalig3 =
1

M2

M∑
m=1

N∑
n=1

(Amn − Zmn)
2
, (14)

where Amn and Zmn are cosine similarity matrix of feature
representations and label representations,

Amn = S
(
r
(m)
feature, r

(n)
feature

)
,

Zmn = S
(
r
(m)
labelDis, r

(n)
labelDis

)
.

(15)

where m and n are m-th and n-th instances. In Figure 2, each
element of the similarity matrix is abbreviated as S(rmn

feature)

or S(rmn
labelDis)

To reduce the likelihood of significant disparities in the
label distribution representation, rlabelDis derived using the
reparameterization technique from the Gaussian distribution
of label representation are fed into the decoder Fde, enabling
an alignment between the predicted label distribution and the
ground truth distribution.

Lalig4 = KL(D||Fde(rlabelDis)). (16)
where D indicates the ground truth, rlabelDis is the reparam-
eterization result from the Gaussian distribution of the label
representation. Fde is the decoder network, which is repre-
sented by three green cubes in Figure 2.

3.3 Objective
During the training phase, the optimization objective of our
proposed DILDL consists of six components, namely, two de-
coupled imbalance label distribution learning losses and four
alignment losses.
Ltotal = αLDDL + (1− α)LNDDL︸ ︷︷ ︸

DILDL

+ λ(αLalig1 + (1− α)Lalig2)︸ ︷︷ ︸
Decoupled Alignment

+βLalig3 + γLalig4

︸ ︷︷ ︸
Alignment

.

(17)
where α, β, γ and λ are balance parameters to balance the
weight during the training process in the total loss Ltotal. In
the inference stage, the predicted label distribution can be ob-
tained from Fdecoder(Fencoder(x

∗)).

4 Experiment
In this section, we conduct extensive experiments on six
ILDL datasets, which are sampled from standard LDL
datasets, to assess the effectiveness of our proposed decou-
pled imbalance label distribution learning approach. In the
following subsections, we will report on the datasets used, the
evaluation metrics, the experiment setup, the results, and fur-
ther analysis. All experiments were implemented using the
PyTorch framework and executed on one NVIDIA GeForce
RTX 4060 GPU. The code of the paper has been open-
sourced.

4.1 Datasets and Evaluation
The datasets encompass a diverse range of sources, includ-
ing SCUT-FBP [Xie et al., 2015], Flicker-LDL [Yang et al.,
2017a; Yang et al., 2017b], Movie [Geng and Hou, 2015],
Emotion6 [Peng et al., 2015], Natural Scene [Geng, 2016],
and RAF-ML [Li and Deng, 2019], each providing unique
insights and challenges for our research.

To ensure the robustness and generalizability of our model,
we adopt a rigorous experimental design. Specifically, we
randomly split each dataset 10 times, allocating a substantial
portion of 90% of the data to the combined training and val-
idation sets. Within this 90%, we typically further subdivide
the data into separate training and validation subsets to fine-
tune our models and prevent overfitting. The remaining 10%
of the data is reserved for the test set, serving as an unbiased
evaluation of our model’s performance on unseen data.

To better verify the proposed DILDL, following ILDL
[Zhao et al., 2023b], four distance metrics (Chebyshev ↓,
Clark↓, Canberra↓, Kullback-Leibler↓) and two similarity
metrics (Cosine↑, Intersection↑) are adopted to evaluate the
performance of all the methods. The ”↓” after the distance
metrics indicates ”the smaller the better”, and the ”↑” after
the similarity metrics indicates ”the larger the better”.

4.2 Implementation Details
We select 10 comparison methods, which fall into three
major categories: LDL algorithms, adaptation ILDL algo-
rithms, and specially designed ILDL algorithm. SA-BFGS
[Geng, 2016], EDL-LRL [Jia et al., 2019b], LDLSF [Ren
et al., 2019a], LDL-LCLR [Ren et al., 2019b], Adam-LDL-
SCL [Jia et al., 2019a] and LDL-LDM [Wang and Geng,
2021a] are six state-of-the-art LDL algorithms. Following
the objective function reshaping method [Zhao et al., 2023b],
OFR-FL, OFR-CB, OFR-DB techniques are used to reshape
the LDL algorithms into three adaptation ILDL approaches.
In addition, the latest specially designed ILDL algorithm
RDA [Zhao et al., 2023b] is also selected as the comparison
method.

The learning rate is set 0.001. The batch size is 50. The
trade-off parameter α in Eq. (17) is 0.6, which is selected
from parameter sensitivity analysis. The trade-off parameters
λ, β and γ for alignment are set 0.1. The maximum epoch
is 300. During the inference stage, the predicted label distri-
bution is obtained from the decoder network after the feature
encoder.
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Algorithm Movie SCUT - FBP Emotion6 Flickr LDL RAF - ML Natural Scene
SA - BFGS 0.3415±0.0070• 0.7266±0.0326• 0.8292±0.0179• 0.8948±0.0149• 0.7575±0.0149• 0.6621±0.0198•
EDL - LRL 0.3638±0.0118• 0.3522±0.0236• 0.4175±0.0074• 0.5811±0.0060• 0.4784±0.0137• 0.4341±0.0233•
LDLSF 0.3624±0.0107• 0.4701±0.0307• 0.4355±0.0106• 0.5697±0.0092• 0.4177±0.0174• 0.4440±0.0249•
LDL - LCLR 0.3346±0.0072• 0.3332±0.0246• 0.5239±0.0136• 0.7033±0.0126• 0.3849±0.0107• 0.5680±0.0225•
Adam - LDL - SCL 0.7175±0.0487• 0.4460±0.0218• 0.4711±0.0333• 0.6711±0.0547• 0.5848±0.0300• 0.4773±0.0344•
LDL - LDM 0.4858±0.0285• 0.4030±0.0441• 0.4739±0.0159• 0.5816±0.0085• 0.5348±0.0275• 0.4769±0.0234•
OFR - FL 0.3416±0.0151• 0.3364±0.0357• 0.3910±0.0102• 0.5636±0.0054• 0.5081±0.0236• 0.4323±0.0201•
OFR - CB 0.3337±0.0177• 0.3447±0.0289• 0.3922±0.0091• 0.5658±0.0059• 0.5057±0.0161• 0.4329±0.0209•
OFR - DB 0.2548±0.0080• 0.3199±0.0384• 0.3772±0.0072• 0.5252±0.0205• 0.4638±0.0196• 0.3872±0.0254•
RAD 0.1962±0.0068• 0.2849±0.0157 0.3598±0.0079• 0.5208±0.0075• 0.3756±0.0068• 0.3768±0.0208
DILDL (Ours) 0.1752±0.0091 0.2684±0.0182 0.3485±0.0061 0.5025±0.0073 0.3484±0.0102 0.3624±0.0212

Table 1: Experimental results on ILDL datasets measured by Chebyshev distance ↓.

Algorithm Movie SCUT-FBP Emotion6 Flickr LDL RAF-ML Natural Scene
SA-BFGS 0.8007±0.0539• 13.0419±4.1007• 21.8514±1.0523• 27.1262±1.5508• 18.2051±1.2023• 4.7976±0.3734•
EDL-LRL 0.7797±0.0472• 0.8111±0.1085• 1.4348±0.1160• 9.9140±4.5756• 1.2838±0.0994• 2.5862±1.5835•
LDLSF 3.1338±0.3786• 8.4136±1.6575• 9.4371±0.5063• 12.8509±1.0510• 7.0684±1.1409• 8.8454±0.5594•
LDL-LCLR 0.6803±0.0314• 0.6034±0.0788• 2.2820±0.1581• 6.2168±0.2896• 1.0106±0.0704• 2.9449±0.2527•
Adam-LDL-SCL 19.1715±1.6303• 2.3768±1.1735• 8.1116±4.8903• 17.1944±8.5188• 6.1170±4.2557• 9.6209±4.8989•
LDL-LDM 1.8123±0.2788• 1.0253±0.2190• 1.7890±0.1369• 2.7424±0.2096• 1.9157±0.2248• 1.7753±0.2056•
OFR-FL 0.6459±0.0567• 0.6415±0.1438• 1.1829±0.0959• 2.5989±0.1650• 1.3672±0.1676• 1.3364±0.0981•
OFR-CB 0.6288±0.0604• 0.6581±0.1171• 1.1904±0.0776• 2.6285±0.3774• 1.3264±0.1110• 1.3280±0.0932•
OFR-DB 0.3883±0.0160• 0.5577±0.1317• 0.9238±0.0238• 1.7751±0.2858• 1.1481±0.0823• 1.1746±0.0898•
RAD 0.2491±0.0149• 0.4313±0.0328 0.7677±0.0218• 1.6071±0.1107• 0.7058±0.0203• 1.1188±0.0591
DILDL (Ours) 0.2211±0.0121 0.4131±0.0315 0.7393±0.0254 1.5011±0.0925 0.6025±0.0320 1.0734±0.0437

Table 2: Experimental results on ILDL datasets measured by Kullback-Leibler divergence ↓.

DRDA DLD Cheb↓ Clark↓ Can↓ KL↓ Cos↑ Inter↑
0.198 0.802 1.561 0.254 0.808 0.703

✓ 0.182 0.781 1.544 0.241 0.821 0.716
✓ 0.187 0.792 1.552 0.246 0.815 0.710

✓ ✓ 0.175 0.768 1.529 0.221 0.834 0.729

Table 3: The results of the ablation study on Movie dataset.

4.3 Results
Table 1 and 2 show the main results of different methods
on six dataset measured by Chebyshev and KL divergence.
The best performances are highlighted in bold. And •/◦
represents whether our proposed method is statistically su-
perior/inferior to the comparing methods, which is calculated
by two-tailed t-test under 0.05 significance level. From the re-
sults, our proposed algorithm consistently achieves the low-
est Chebyshev distance across all datasets, indicating supe-
rior performance compared to the other algorithms. Specif-
ically, our proposed method outperforms all others with a
distance of 0.1752±0.0091, significantly lower than the next
best (RAD with 0.1962±0.0068) on Movie dataset. Sim-
ilarly, our method achieves 0.2684±0.0182, outperforming
RAD (0.2849±0.0157) and other competitors on SCUT-FBP
dataset. Our proposed algorithm also demonstrates the best
performance in terms of KL divergence across all datasets,
consistent with the Chebyshev distance results. For exam-
ple, on Emotion6 dataset, our method gains the best perfor-
mance with a divergence of 0.7393±0.0254. Our method’s
divergence of 1.5011±0.1165 is notably lower than RAD’s
1.6071±0.1107 on Flickr LDL, underlining its efficiency. Ta-
ble 5 also verifies the effectiveness of our method.

DRDA DLD Cheb↓ Clark↓ Can↓ KL↓ Cos↑ Inter↑
0.375 2.485 6.930 1.118 0.597 0.404

✓ 0.369 2.481 6.916 1.071 0.606 0.406
✓ 0.370 2.481 6.919 1.096 0.604 0.405

✓ ✓ 0.362 2.479 6.907 1.073 0.610 0.409

Table 4: The results of the ablation study on Natural Scene dataset.

In summary, the experimental results clearly demonstrate
that our proposed algorithm significantly outperforms the
other algorithms in terms of both Chebyshev distance, KL
divergence and Euclidean distance across multiple ILDL
datasets. These findings underscore the robustness and ef-
fectiveness of our method in tackling imbalance label distri-
bution learning tasks. The consistent lower distances and di-
vergences achieved by our algorithm across diverse datasets
suggest its generalizability and potential for practical appli-
cations where accurate imbalance label distribution learning
is paramount importance.

4.4 Ablation Study
The decoupled section of our proposed method seamlessly
integrates both the decoupled label distribution and the de-
coupled representation distribution alignment. To evaluate
the impact of each component within our proposed method,
we conducted a rigorous ablation study by defining variations
of DILDL. Specifically, ”DRDA” denotes the decoupled rep-
resentation distribution alignment component, while ”DLD”
signifies the decoupled label distribution component.

Tables 3 and 4 present the results of the ablation studies
conducted on both the Movie dataset and the Natural Scene
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Algorithm Movie SCUT-FBP Emotion6 Flickr LDL RAF-ML Nature Scene
all tail head all tail head all tail head all tail head all tail head all tail head

SA-BFGS .473• .346• .303• .914• .760• .355• .992• .888• .269• 1.108• .617• .864• .936• .849• .221• .834• .736• .257•
EDL-LRL .495• .360• .315• .473• .323• .326• .572• .508• .214• .779• .567• .501• .652• .490• .416• .582• .511• .242•
LDLSF .502• .359• .337• .643• .442• .447• .602• .540• .198• .771• .552• .492• .565• .490• .218• .611• .565• .181•
LDL-LCLR .466• .337• .309• .449• .318• .298• .692• .625• .201• .919• .599• .632• .502• .438◦ .177• .736• .672• .211•
Adam-LDL-SCL .856• .676• .378• .639• .461• .435• .672• .618• .225• .914• .579• .679• .806• .587• .527• .649• .563• .297•
LDL-LDM .618• .484• .297• .539• .420• .286• .643• .583• .203• .779• .563• .498• .721• .555• .416• .634• .578• .197•
OFR-FL .497• .336• .338• .469• .337• .315• .540• .495• .190• .755• .556• .480• .691• .496• .473• .574• .499• .253•
OFR-CB .472• .334• .329• .481• .342• .330• .541• .497• .190• .760• .555• .488• .687• .491• .473• .575• .499• .256•
OFR-DB .377• .285• .243• .443• .332• .284• .503• .465• .163• .666• .524 .374• .636• .498• .384• .526• .492• .162•
RAD .295• .245• .157• .386• .299• .234• .464• .429• .133• .645• .526• .333• .484• .454• .132• .515• .486• .151•
DILDL (Ours) .251 .227 .133 .350 .273 .198 .452 .427 .112 .631 .524 .313 .451 .452 .121 .497 .473 .132

Table 5: Experimental results (tail, head and all labels) on ILDL datasets measured by Euclidean Distance ↓.

Figure 3: Effects of the values of α, β, γ and λ settings on ILDL datasets on Chebyshev Distance ↓. The first row shows the results of
parameters α, β, γ on Emotion6 and Flickr LDL datasets. The second row shows the results of parameter λ on six datasets.

dataset, offering insights into the influence of the DRDA and
DLD components across various evaluation metrics. The
table for the Movie dataset (Table 4) illustrates the perfor-
mance of different configurations with and without DRDA
and DLD. When both DRDA and DLD are active (indicated
by checkmarks), we observe significant improvements across
all metrics compared to when either or both are deactivated.
Similarly, the results for the Natural Scene dataset (Table 5)
demonstrate the advantages of combining DRDA and DLD.
For instance, the result decreases from 1.118 to 1.063 when
both DRDA and DLD are enabled, indicating better align-
ment of distributions. Without DRDA, the result increases
from 1.063 to 1.096 under the KL divergence metric, which
underscores the effectiveness of the proposed DRDA. The
combined results from both datasets consistently reveal that
enabling both DRDA and DLD leads to enhanced perfor-
mance across all metrics. This underscores the positive con-
tribution of both components in improving the quality of im-
balance label distribution learning.

4.5 Parameter Sensitivity Analysis
To select the optimal balance parameters, we compare the
performances of our proposed DILDL with various values
of hyperparameters across six datasets, evaluating the perfor-
mance using the Chebyshev distance. Figure 3 illustrates the
results of the parameter sensitivity analysis. From the fig-

ure, we can conclude that the parameter α exhibits a higher
degree of sensitivity compared to the other three parameters,
suggesting that meticulous tuning of this parameter can fur-
ther enhance the model’s performance. When α = 0.6, the
model’s performance is optimal in most cases. Additionally,
DILDL exhibits better performances with 0.1 for the other
three hyperparameters.

5 Conclusion
LDL has been proven to be an efficient learning paradigm for
solving the label ambiguity problems. However, it may en-
counter the challenge posed by ILDL. In this paper, we pro-
pose a novel ILDL method named Decoupled Imbalanced La-
bel Distribution Learning (DILDL). DILDL decomposes im-
balanced label distributions into dominant and non-dominant
components. By employing the decoupling approach, we in-
dependently balance the description degrees of both domi-
nant and non-dominant labels. Furthermore, we separately
align feature representations with those of dominant and non-
dominant labels, thereby significantly mitigating the issue
of gradient information attenuation for non-dominant labels.
Experimental results demonstrate that our proposed method
outperforms other methods. In the future, we aim to explore
the application of feature decoupling methods to further en-
hance the performance of the DILDL approach.
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