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Abstract
Industrial video anomaly detection aims to perform
real-time analysis of video streams from industrial
production lines and provide anomaly alerts. Con-
ventional video anomaly detection methods focus
more on the overall image, as they aim to iden-
tify anomalies among multiple normal samples ap-
pearing simultaneously. However, industrial sce-
narios, where the primary focus is on a single type
of product, require attention to local areas to cap-
ture fine-grained details and specific patterns. Di-
rectly applying conventional methods to industrial
scenarios can result in an inability to focus on
products moving along fixed trajectories, ineffec-
tive utilization of their equidistant periodicity, and
greater susceptibility to lighting variations. To ad-
dress these issues, we propose INFP, an encoder-
decoder framework that learns frequency-domain
features from videos to capture periodic and dy-
namic characteristics, enhancing the model’s ro-
bustness. Specifically, a trajectory filter is proposed
that takes advantage of the significant difference
between moving objects and static backgrounds in
the frequency domain by assigning higher weights
to fixed moving trajectories. Moreover, a multi-
feature fusion module is proposed, in which the
frequency domain features of the video are first ex-
tracted to leverage the unique equidistant periodic-
ity information of videos from industrial produc-
tion lines. The extracted frequency domain fea-
tures are subsequently fused with spatio-temporal
features and contextual information is further in-
tegrated from the fused representation, effectively
mitigating the impact of lighting variations on pro-
duction lines. Extensive experiments on the bench-
mark IPAD dataset demonstrate the superiority of
our proposed method over the state-of-the-art.

1 Introduction
Video anomaly detection (VAD) [Zhong et al., 2019; Za-
heer et al., 2020; Sultani et al., 2018; Le and Kim, 2023;
Gong et al., 2019; Hasan et al., 2016] aims to identify unusual
or unexpected events in video sequences that deviate from
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Figure 1: Comparison of video anomaly detection in a conven-
tional and industrial scenario. Compared to the conventional sce-
nario, industrial scenario video has the following characteristics:
(1) The products in the video are sparsely distributed, occupying
a smaller visual proportion. (2) The products appear on the produc-
tion line at regular time intervals, exhibiting a distinct equidistant
periodicity. (3) Lighting variation has a greater impact on the video.

normal patterns. In addition to traffic accidents, criminal ac-
tivities, and illegal behaviors, the demand for applying video
anomaly detection in industrial scenarios has continuously
increased with the manufacturing industry’s development.
However, directly applying conventional video anomaly de-
tection methods in industrial scenarios does not yield good
performance because industrial scenarios differ from conven-
tional ones in three key factors: (1) Products on industrial
production lines are typically sparsely distributed within the
frame, occupying a smaller visual proportion, whereas in con-
ventional ones, vehicles and pedestrians are more densely dis-
tributed and occupy a larger portion of the frame. (2) Products
on production lines exhibit an even distribution over time,
demonstrating equidistant periodicity, which is not as appar-
ent in conventional scenarios. (3) Compared to conventional
scenarios, lighting variations in industrial ones are more pro-
nounced and have a greater impact on detection results.

To address the above issues, we propose INFP that contains
a trajectory filter and a multi-feature module. Specifically,
to solve the sparse distribution of products, an effective ap-
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Industrial VideoHigh Frequency Energy Magnitude Spectrum

Blue: Object
Red: Background

Conventional Video

Figure 2: Motivation. The figure shows that in industrial scenario, the difference in high-frequency energy between moving objects and the
background is more pronounced. Additionally, the magnitude spectrum of industrial scenes exhibits more obvious periodicity.

proach is to separate them from the background in industrial
scenarios, allowing the detector to focus more on the product
areas. As shown on the left side of Figure 2, we extract the
high-frequency energy of moving objects and backgrounds in
both conventional and industrial scenarios. The results reveal
a clear distinction in high-frequency energy between the two
in industrial scenarios, which enables us to separate the prod-
ucts from the background based on this difference. Therefore,
a trajectory filter is designed to assign higher weights to re-
gions with higher high-frequency energy. Assigning higher
weights to moving objects during the training and inference
steps highlights the moving object characteristics on fixed
trajectories through frequency-domain weighting, effectively
enhancing the model’s robustness and adaptability to indus-
trial video anomaly detection.

Moreover, to cope with periodic information and light-
ing variation, we propose a multi-feature fusion module. In
this module, a frequency-domain feature extractor is designed
to extract frequency-domain signals with distinct equidistant
periodic spectra. After that, the fused features, formed by
integrating frequency-domain features with spatiotemporal
features, also exhibit distinct equidistant periodicity, provid-
ing robust and structured input for the subsequent decoder,
thereby enhancing its ability to capture periodic information
effectively. The use of periodic information can help iden-
tify speed anomalies and product absence in industrial sce-
narios. Subsequently, the contextual information of the fused
features is fully integrated and activated, which makes full
use of the complementarity of multiple features, reducing sig-
nificant pixel variations in video frames caused by lighting
changes.

Our main contributions are summarized as follows.

1) We introduce INFP, an encoder-decoder framework that
learns frequency-domain features to address specific is-
sues in the industrial video anomaly detection task.

2) A trajectory filter and a multi-feature fusion module are
proposed to solve distribution sparsity, equidistant peri-
odicity, and light sensitivity of products on the produc-
tion line.

3) Extensive experiments on IPAD datasets demonstrate
the superiority of our proposed method over SOTA. The
metrics also indicate that our model has better general-

ization ability and robustness.

2 Related Work
2.1 Video Anomaly Detection
In video anomaly detection, researchers[Zhong et al., 2019;
Zaheer et al., 2020; Sultani et al., 2018] use normal and an-
notated anomaly video data to train models. Detailed anno-
tation of enriched anomaly data typically helps improve the
models’ performance on the test set. However, due to the
difficulty of obtaining anomaly video data in real-world sce-
narios, researchers[Le and Kim, 2023; Gong et al., 2019;
Liu et al., 2020] train the model using only normal video
data, which is called One-Class Classification (OCC) task, to
get rid of dependence on anomaly data. The primary frame-
works for the OCC problem can be generally divided into
two categories: reconstruction-based models and prediction-
based models. Reconstruction-based models are trained to
reconstruct the input frame. Hasan[Hasan et al., 2016] et al.
first propose an auto-encoder structure to reconstruct video
frames in the context of anomaly detection. MemAE[Gong
et al., 2019] propose a memory module to store feature in-
formation for better reconstruction. IPAD VAD[Liu et al.,
2024] proposes a period memory module to explore periodic
information in the reconstruction-based models. Prediction-
based models use some previous frames to predict the future
frames are normal or not. Astnet[Le and Kim, 2023] con-
tains a channel-based decoder for focusing on important ob-
jects while predicting future frames. Doshi[Doshi and Yil-
maz, 2021] et al. use a GAN[Goodfellow et al., 2014] to
predict whether future frames are normal. However, these
methods struggle to perform well in industrial scenarios with
complex lighting conditions.

2.2 Industrial Image Anomaly Detection
In recent years, image anomaly detection has gained increas-
ing attention. Models are trained to determine whether an
image contains anomalies and locate them. Anomaly detec-
tion in industrial images[Bergmann et al., 2019; Wang et al.,
2024] plays a crucial role in adjusting industrial production
lines. The training methods can be divided into four cate-
gories: deep feature embedding methods [Bergmann et al.,
2020; Deng et al., 2024a; Salehi et al., 2021], image re-
construction methods[Tsai et al., 2022; Zhang et al., 2023],
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Figure 3: Overall structure of our method. It mainly consists of an encoder containing a feature extractor and a feature fusion module, and
a decoder containing a channel attention module and a trajectory filter.

image generation methods[Gudovskiy et al., 2022; Schlegl
et al., 2017], and self-supervision methods[Li et al., 2021;
Pirnay and Chai, 2022]. In addition, TF2[Yu et al., 2024]
improves detection performance by generating more defect
images. Deng[Deng et al., 2024b] et al. propose VMAD
(Visual-enhanced MLLM Anomaly Detection) that enhances
MLLM (Multimodal Large Language Models) with visual-
based IAD (Industrial Anomaly Detection) knowledge, si-
multaneously providing precise detection and comprehensive
analysis of anomalies. However, these methods can only deal
with still images, failing to fully take advantage of tempo-
ral and periodic information in the video. So it is difficult
to directly apply these methods to industrial video anomaly
detection scenarios.

3 Method
3.1 Model Overview
In this section, we will detail the overall framework of the
proposed network. As shown in Figure 3, our model is based
on a classic encoder-decoder network[Le and Kim, 2023] to
complete the industrial video anomaly detection task. It con-
sists of the multi-feature fusion encoder for captioning the

multi-features and fusing them, and a decoder contains a tra-
jectory filter for better determining future frames.

Our model uses a deep and wide convolutional neural net-
work fe to extract high-level features from the given frames
Iv . Then a multi-feature extractor fm transforms these fea-
tures into three branches: spatial feature Fs, temporal fea-
ture Ft, and frequency feature Ff . A feature fusion module
Ffusion is followed, which constructs a fusion feature com-
bining multi-feature context. So the feature map Me obtained
after the encoder can be described as follows:

Me = Ffusion(fm(fe(Iv); θ)) (1)

or
Me = Ffusion(Fs, Ft, Ff ; θ)) (2)

Here, θ is the learnable parameter of our encoder, consist-
ing of the multi-feature extractor and feature fusion module.

The output of the encoder is used as the input of the de-
coder, which consists of a channel attention module Fca and
a trajectory filter Ffilter. The channel attention module con-
sists of an average pooling and two convolutional layers.
Each of the two convolutional layers is followed by a ReLU
and a sigmoid activation function, respectively. The output of
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the channel attention Mca is computed as follows,

Mca = Fca ⊗Me (3)

where ⊗ denotes element-wise product. The final output
of our network is computed as follows,

M = Ffilter(Mca; θ
′) (4)

Here, θ′ is the learnable parameter of our decoder, consisting
of the channel attention module and the trajectory filter.

The goal of our model is to predict the future frame Pt+1

based on the previous frames {P1, P2, ..., Pt}. We choose L2

loss to constrain the similarity of every pixel from the pre-
dicted frame and the ground-truth frame.

L2(P, P̂ ) =
1

n

n∑
i=1

(P − P̂ )2 (5)

What is more, a gradient constraint is added to get rid of the
potential blur and lighting variant in the frame, which calcu-
lates the difference in absolute values of the gradients along
the two dimensions in 2-dimensional space.

L2d =
∑
i,j

(

√
(|Pi+1,j+1 − Pi,j+1| − |P̂i+1,j+1 − P̂i,j+1|)2

+

√
(|Pi+1,j+1 − Pi+1,j | − |P̂i+1,j+1 − P̂i+1,j |)2) (6)

Hence, the final loss of our network is defined as follows,

L((P, P̂ )) = αL2(P, P̂ ) + (1− α)L2d(P, P̂ ) (7)

where α is the coefficient that controls the weights of these
two losses.

3.2 Multi-feature Fusion
To cope with periodic information and lighting variation, we
propose a multi-feature fusion module. We design a fre-
quency feature extractor to transform periodic information
into the frequency domain to highlight its characteristics.
First, we perform a Fourier transform on the previously ex-
tracted features fe(Iv).

z =

∫ +∞

−∞
fe(Iv)e

−jωt dt (8)

Meanwhile, z can be expressed as:

z = â+ b̂j (9)

z = |z|ej·angle(z) (10)

where |z| =
√

â2 + b̂2, angle(z) = arg(z) = arctan( b̂â ).
We further extract features from the real and imaginary parts
separately.

a = â+ δ(ω(f(â))) (11)

b = b̂+ δ(ω(f(b̂))) (12)

where f(·), ω(·), δ(·) denote convolutional neural network
(CNN), LeakyReLU, global average pooling followed by the

fully connected network, respectively. We apply the inverse
Fourier transform to the newly obtained z = a+ bj.

f(t) =
1

2π

∫ ∞

−∞
zejωtdω (13)

So the final frequency feature can be written as:

Ffrq = [γ(z); f(t)] (14)
where γ denotes convolutional neural network (CNN), z

originates from equation (8).
In addition to frequency domain information, we also need

to utilize the spatiotemporal information of industrial videos
to help us make better decisions. We use [Lin et al., 2019] to
exploit temporal information in the industrial video.

Fst = fe(Iv) + tsm(fe(Iv)) (15)
So the multi-feature can be written as:

Fmul = Ffrq + Fst (16)

To address the impact of lighting variations on videos, we
further process the multi-feature and extract deeper informa-
tion by combining feature contexts. First, we predefine a re-
gion A ∈ Ra×a×c on the multi-feature Fmul ∈ Rh×w×c,
with four sub-regions ã located in one of the four corners of
A. We perform convolution operations on the predefined four
sub-regions, allowing us to focus only on the predefined ar-
eas while ignoring information from other regions. The val-
ues obtained through convolution are used as the results of
region A after combining with contextual information. Since
we need to maintain the same feature dimensions before and
after combining with contextual information, zero padding
is required when defining A in the four corners and along
the four edges of Fmul. Then the output is passed through
a ReLU activation to obtain activation map Mcon. Although
our method incorporates contextual information, it may gen-
erate biased activation maps. Therefore, we need to correct
any potential biases.

M ′
con = Mcon ⊗ σ(Z2 · (δ(Z1 · (Mcon)))) (17)

where Z1 and Z2 represent fully connected network, δ and
σ represent ReLU and Sigmoid activation, respectively. The
modified M ′

con then is passed into the decoder.

3.3 Trajectory Filter
To focus attention on the fixed trajectories of object motion
rather than the surrounding background, we introduce a tra-
jectory filter that assigns higher weights to pixels on the fixed
trajectories and lower weights to the background. The fea-
tures Fd ∈ RB×H×W×C processed by equation (3) are fed
into the trajectory filter. First, we perform a Fourier trans-
form on the Fd to extract the frequency feature.

X = {x1, x2, ...xn} =

∫ +∞

−∞
δ(Z3(Fd))e

−jωt dt (18)

where Z3 represents fully connected network, δ represents
ReLU activation, respectively. Then, we use global average
pooling and an MLP to compute the trajectory weights.

R = softmax(Z4(GAP (Fd))) (19)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 R01 R02 R03 R04 Avg.
conAE[Hasan et al., 2016] 63.1 47.7 53.0 34.7 82.9 46.6 58.3 69.1 53.0 55.3 39.8 50.4 77.6 64.3 40.7 70.1 56.7
memAE[Gong et al., 2019] 63.2 50.6 65.6 49.5 78.8 45.9 57.9 84.7 65.7 59.9 49.4 50.7 77.9 65.0 41.6 70.7 61.1
AstNet[Le and Kim, 2023] 67.7 52.0 61.0 51.6 80.4 54.1 54.5 82.6 59.8 55.7 47.8 60.8 79.8 66.8 42.1 67.6 61.5
DMAD[Liu et al., 2023] 55.9 55.3 47.9 47.9 69.3 61.0 66.9 87.5 69.7 67.0 56.0 55.8 79.5 68.5 43.1 63.1 62.2
V-Swin-T[Liu et al., 2022] 68.2 60.0 66.6 54.7 85.6 53.3 59.5 88.5 69.7 60.5 54.8 69.1 81.1 74.1 42.3 75.5 66.5
IPAD VAD[Liu et al., 2024] 69.5 63.9 70.6 58.3 86.2 61.2 60.6 85.6 71.2 62.2 60.9 67.1 84.4 75.4 43.5 76.7 68.6
Ours 77.2 62.8 70.6 56.0 89.7 73.4 78.1 96.3 66.6 71.9 56.9 60.9 86.5 77.9 48.4 75.3 71.8

Table 1: Main Result on the IPAD (industrial period video dataset). Each result is a frame-level AUC score. The best results are highlighted
in bold and the second-best result is underlined. The last column indicates the mean value of AUC under all cases.

Category Baseline +Fusion +Filter +Fusion&Filter

S01 69.8 75.3 72.9 77.2
S02 52.5 57.1 55.8 62.8
S03 62.4 68.1 66.2 70.6
S04 50.8 53.5 52.7 56.0
S05 79.9 85.4 84.2 89.7
S06 53.5 68.1 68.8 73.4
S07 55.4 73.4 72.2 78.1
S08 81.8 94.2 92.5 96.3
S09 59.8 62.2 64.1 66.6
S10 56.2 68.8 64.7 71.9
S11 47.8 54.8 53.3 56.9
S12 55.5 57.9 56.8 60.9
R01 81.0 84.8 83.5 86.5
R02 67.5 75.4 73.6 77.9
R03 41.2 45.4 43.2 48.4
R04 66.6 70.9 71.7 75.3

Average 61.3 68.5 67.2 71.8

Table 2: The results of ablation studies. ‘+Fusion’ and ‘+Filter’
represent the baseline with only multi-feature fusion and the baseline
with only trajectory filter, respectively. The last column represents
our method.

where Z4 represents fully connected network, GAP (Fd) =
1

H·W
∑H

h=1

∑W
w=1 (Fd)h,w. We generate a random complex

weight W = Wreal + j · Wimag and combine it with the
trajectory weight.

W = {w1, w2, ..., wn} =
N∑

n=1

Rb,n,c ·Wh,w,n (20)

We multiply X and W element-wise in the frequency domain
to obtain the final weighted result, and the final output is de-
fined as follows:

Xout = δ(Z5(
1

2π

∫ ∞

−∞
(X ⊗W )ejωtdω)) (21)

where Z5 represents fully connected network, δ represents
ReLU activation, respectively.

4 Experiments
4.1 Dataset and Evaluation Protocol
IPAD[Liu et al., 2024] is the first video anomaly detection
dataset that focuses on industrial scenarios, which contains
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Figure 4: ROC Curve of ablation study, taking category S01 as an
example.

a total of 597,979 frames, with 430,867 frames allocated for
training data and 167,112 frames for the test data. The indus-
trial processes in this dataset are selected through factory site
visits and discussions with engineers. This dataset includes
16 different types of industrial devices and contains over six
hours of video footage, comprising both synthetic and real-
world scenes.

Following the prior work[Hasan et al., 2016; Liu et al.,
2018; Liu et al., 2024], we choose the frame-level area un-
der the curve (AUC) to evaluate the performance of our pro-
posed method and other state-of-the-art video anomaly de-
tection methods. AUC, a widely used evaluation metric for
binary classification models, represents the area beneath the
model’s receiver operating characteristic (ROC) curve. We
concatenate the video frames in the test set and calculate the
AUC values. Higher AUC values indicate better anomaly de-
tection methods’ performance.

4.2 Implement Details
Each video frame is resized as 224 × 288, the intensity of
which is normalized to the range of [−1, 1] before being fed
into the model. The learning rate is set as 2e-4 initially and
decrease to 1e-4 at epoch 120. The Adam optimizer is used
to train our network. A sequence of five video frames is ran-
domly selected from the training set, with the first four frames
serving as input and the fifth frame serving as the ground
truth. The frame predicted by the model is then compared
to the ground truth frame to calculate the anomaly score.
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Figure 5: Difference in heat map between the predicted frame and the ground truth frame. Taking category S01 as an example, the
images show the heat maps under different conditions: normal, speed anomaly, color anomaly, shape anomaly, and angle anomaly.
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Figure 6: Visualization of Anomaly Score. The ground truth is displayed on the left side from top to bottom. It can be observed that the
three peaks in the anomaly score correspond to the occurrence of three abnormal events.

4.3 Comparison with State-of-the-arts

We compare our method with six other methods which
can be divided into three types: (1) Methods for conven-
tional video anomaly detection: conAE[Hasan et al., 2016],
memAE[Gong et al., 2019], AstNet[Le and Kim, 2023], V-
Swin-T[Liu et al., 2022]; (2) Method for industrial image
anomaly detection: DMAD[Liu et al., 2023]; (3) Method
for industrial video anomaly detection: IPAD VAD[Liu et
al., 2024]. It is worth mentioning that V-Swin-T is a model
that contains an auto-encoder reconstruction structure utiliz-
ing the Video Swin Transformer as the feature extractor. To
the best of our knowledge, IPAD VAD is currently the only
model specifically designed for industrial video anomaly de-
tection, aside from our method. Table 1 shows the main ex-
perimental results, which indicate the superiority of our pro-
posed network. Our method achieved an average AUC of

71.8% on the IPAD dataset, surpassing the existing state-of-
the-art (SOTA) methods.

4.4 Ablation Study
We conduct several ablation experiments on the IPAD dataset
as shown in Table 2 to demonstrate the effectiveness of our
architecture. The performance of our network is mainly at-
tributed to the two modules: the multi-feature fusion and the
trajectory filter. Note that we progressively add additional
components to the baseline, enabling us to gauge the perfor-
mance improvement obtained by each. It can be obviously
seen that the multi-feature fusion module and the trajectory
filter module bring about 7.2% and 5.9% AUC scores, respec-
tively. And these two modules boost the overall performance,
resulting in a 10.5% improvement. Figure 4 shows the ROC
curves when evaluating the category S01, using the trained
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Figure 7: Robustness Comparison in Low Light Conditions. Four sub-figures respectively illustrate the AUC score between our model
and the baseline model under different level low-light disturbances on {R01-R04}.

baseline, baseline with the multi-feature fusion module, base-
line with the trajectory filter module, and baseline with both
two modules.

4.5 Discussion
Heat Map Visualization Figure 5 presents the difference in
heat maps between the predicted frames and the ground truth
frames under various conditions, including normal, speed
anomaly, color anomaly, shape anomaly, and angle anomaly
scenarios. Under normal conditions, the heat map shows min-
imal and evenly distributed differences, indicating that the
model accurately predicts the video frames with only mi-
nor deviations. Regarding the speed anomaly, the heat map
highlights significant differences in motion-related regions,
demonstrating the model’s ability to detect speed variations.
For the color anomaly, the heat map reveals intensified differ-
ences in specific local areas where color shifts occur, show-
casing the model’s sensitivity to such changes. The shape
anomaly results in noticeable differences around the contours
of objects, reflecting the model’s capacity to identify anoma-
lies caused by alterations in object shapes. The angle anomaly
produces distinct differences in areas affected by angular de-
viations, indicating the effectiveness of the model in captur-
ing variations caused by object rotation. Overall, the heat
maps visually demonstrate the model’s capability to detect
and localize various types of anomalies in industrial video
scenarios.

Anomaly Score Visualization Figure 6 shows the visualiza-
tion results of the anomaly score for the 18th video in the test
set of category R04. We extract some frames under normal
conditions as references, arranging them sequentially from
top to bottom on the left side of the figure. It can be observed
that when anomalies occur three times, our anomaly score
also shows three corresponding significant increases. This
demonstrates the effectiveness of our method and highlights
its ability to adapt to subtle temporal and spatial anomalies.
Robustness To demonstrate the robustness of our method
against lighting variations, we test our model and the base-
line model under different levels of low-light disturbances on
the {R01-R04} dataset, evaluating their performance using
AUC scores. Figure 7 shows the results. Compared to base-
line methods, our method maintains a relatively high and sta-
ble AUC score under varying levels of low-light disturbances,
demonstrating its strong robustness.

5 Conclusion
In this work, we propose INFP, an innovative approach
that fully leverages frequency-domain information to address
the challenges of industrial video anomaly detection. The
encoder-decoder architecture consisting of a multi-feature fu-
sion module and a trajectory filter, effectively addresses the
unique challenges of industrial scenarios and enhances the
robustness of the model. Experimental results on the dataset
demonstrate that our method outperforms other approaches.
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