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Abstract
Unsupervised domain adaptation (UDA) has been
widely studied with the goal of transferring knowl-
edge from a label-rich source domain to a related
but unlabeled target domain. Most UDA techniques
achieve this by reducing the feature discrepancies
between the two domains to learn domain-invariant
feature representations. While domain-invariant
feature representations can reduce the differences
between the source and target domains, excessively
simplifying these differences may cause the model
to overlook important domain-specific features, re-
sulting in a decline in transfer learning effective-
ness. To address this issue, we propose a novel
Gaussian Mixture Model for graph domain adap-
tation (GMM). This model effectively reduces the
distributional bias by modeling the distribution dif-
ferences on a graph structure. GMM leverages
the local structural information of the graph and
the clustering capability of the Gaussian mixture
model to automatically learn the latent mapping
relationships. To the best of our knowledge, this
is the first work to introduce a Gaussian mixture
model into UDA. Extensive experimental results on
four standard benchmarks demonstrate that the pro-
posed GMM algorithm outperforms state-of-the-art
unsupervised domain adaptation methods in terms
of performance.

1 Introduction
The problem of labeling scarcity has long been a challenge

in deep learning, as collecting large amounts of labeled data
is often expensive, time-consuming, and even infeasible [Pan
and Yang, 2009; Zhang et al., 2023]. Unsupervised do-
main adaptation (UDA) has emerged as an effective solu-
tion, which leverages knowledge from a source domain with
abundant labeled data and transfers it to a target domain to
compensate for the lack of labeled data in the target domain.
While source and target domains typically share similar se-
mantics, they differ in data distributions [Zhang et al., 2023;
Ganin and Lempitsky, 2015; Du et al., 2024]. In this case, the

†Corresponding Author

knowledge from the source domain may not be directly appli-
cable to the target task, leading to poor transfer performance.

To address the distribution discrepancy between the dif-
ferent domains, UDA methods often reduce the feature dis-
tribution gap to learn domain-invariant [Long et al., 2017;
Wang et al., 2025; Wang et al., 2024c; Wang et al., 2024b;
Wang et al., 2024d] feature representations. This approach
can effectively improve the performance of models in the tar-
get domain, even with a lack of labeled data, by utilizing
the labeled data from the source domain. However, despite
achieving some success, traditional UDA [Li et al., 2021a;
Li et al., 2024] methods still face challenges due to significant
differences between the two domains. These challenges in-
clude overly simplifying domain differences and overlooking
domain-specific features. Therefore, how to better preserve
the feature information of the target domain while reducing
the distribution discrepancy has become a key research focus.

In recent years, UDA methods [Liu et al., 2024; Shi et
al., 2024; Zhang et al., 2024b] have begun to explore incor-
porating additional prior knowledge, structured information,
and graph models to further enhance domain adaptation per-
formance. For example, GCAN [Ma et al., 2019] proposes
an end-to-end graph convolutional adversarial network that
jointly models data structures, domain labels, and class la-
bels within a unified network framework to achieve UDA.
AdaGCN [Dai et al., 2022] develops a novel and principled
framework for graph transfer learning, effectively combining
adversarial domain adaptation and graph convolution tech-
niques to improve transfer learning efficiency. StruRW [Liu
et al., 2023] estimates pseudo-node labels on the target graph
to compute edge probabilities between different classes, and
uses these probabilities to guide the bootstrapping of neigh-
bors in the source graph’s Graph Neural Network (GNN)
computation, effectively reducing conditional shift between
neighborhoods. However, these methods generally assume
homogeneous clusters and rely on Euclidean distances be-
tween points in a given feature space for learning, which
somewhat limits the efficiency of representation learning and
clustering. The homogeneous clustering assumption over-
looks the inherent complexity of the data, especially in do-
main adaptation tasks where there can be significant differ-
ences in data distributions across domains. In such cases, re-
lying solely on Euclidean distances may fail to capture the
complex relationships between data points, leading to sub-
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(a) Raw Data (b) Clusters

Figure 1: Illustration of our motivation. (a) The original data space distributions of the source and target domains not only fail to align but
also cannot be well clustered. (b) Through the GMM model, we can cluster data points of the same class together.

optimal clustering results and poor performance in cross-
domain transfer, making it difficult to achieve desirable gen-
eralization performance.

To handle this issue, we propose the use of the Gaussian
Mixture Model (GMM) for graph domain adaptation. The
GMM, with its ability to model data distributions as a mixture
of multiple Gaussian components, offers a more flexible ap-
proach compared to traditional clustering methods. It can ef-
fectively capture the heterogeneity of clusters, thus allowing
for a more accurate representation of complex, multi-modal
distributions inherent in real-world data (see Figure. 1). Ad-
ditionally, when applied to graph-based domain adaptation,
the GMM can leverage the graph structure to encode rela-
tionships between data points more efficiently, allowing for
improved domain alignment and more robust feature repre-
sentations. By integrating GMM into the UDA framework,
we can better model the domain shift and reduce the risk of
negative transfer. The proposed approach not only enhances
clustering performance but also facilitates smoother domain
adaptation, enabling more reliable and scalable solutions in
tasks such as cross-domain classification and data analysis.
Our main contributions can summarized as follows:

• We propose a novel unified framework for graph do-
main adaptation, called GMM, which is capable of han-
dling both heterogeneous graph structures and domain
distribution shifts simultaneously. The framework effec-
tively integrates the power of Gaussian mixture models
for probabilistic distribution modeling and graph neural
networks for structural representation learning.

• Incorporating graph structural information into the adap-
tation process, maintaining consistency in relational de-
pendencies.

• We conduct extensive experiments on real-world in-
formation networks to verify the effectiveness of our
model, which demonstrates its superior performance
compared with state-of-the-art baselines, impressive la-
bel efficiency, and good model robustness against distri-
bution discrepancy.

2 Related Work
2.1 Unsupervised Domain Adaptation
Current UDA techniques concentrate on acquiring fea-
ture representations that are domain-invariant. UDA tech-
niques [Long et al., a; Long et al., b] have as one goal re-
ducing the disparity between several domains. To quantify
the difference between the source and target domains, early
methods use combined MMD and MK-MMD. Additionally,
various well-designed discrepancies and higher-order statis-
tics are used [Zellinger et al., 2017]. The intra-class and inter-
class domain discrepancies introduced by CAN [Zellinger et
al., 2017] are used to leverage category information for do-
main alignment. An alternative approach involves creating an
adversarial optimization goal for a domain discriminator and
using adversarial learning to acquire domain-invariant repre-
sentations. Through the use of a progressively disappearing
bridge mechanism, GVB-GD [Cui et al., 2020] encourages
adversarial domain adaptation. Using several adversarial dis-
criminators, GSDA [Hu et al., 2020] implements hierarchical
domain alignment. In contrast to STAR [Lu et al., 2020],
which samples classifiers from Gaussian distributions with-
out additional parameters, MCD [Saito et al., 2018] maxi-
mizes the discrepancy between two classifiers.

2.2 Graph Neural Networks (GNN)
Graph Neural Networks (GNNs) are a natural extension of
convolutional neural networks in non-Euclidean spaces, de-
signed to process graph-structured data. GNNs can cap-
ture complex relationships and structured information, mak-
ing them suitable for applications in social networks, molec-
ular graphs, traffic networks, and more. The concept of
GNNs was first introduced in [Gori et al., 2005; Scarselli
et al., 2008; Wang et al., 2024a; Wang et al., 2025] as a
trainable recursive message-passing model, where node rep-
resentations are updated based on information passed be-
tween nodes, thereby learning the structural features of the
graph. Subsequent research enhanced the model’s expres-
sive power by introducing gating mechanisms [Li et al., 2015;
Sukhbaatar et al., 2016], improving its performance on com-
plex graph structures. Spectral graph convolutional networks,
proposed in [Bruna et al., 2013; Henaff et al., 2015], aim
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to capture global information by learning spectral multipli-
ers of the graph Laplacian. However, these methods come
with high computational costs. To address this issue, [Deffer-
rard et al., 2016] introduced a method that learns polynomials
of the Laplacian to replace the computation of eigenvectors,
improving computational efficiency and reducing complexity,
allowing GNNs to handle larger-scale graph data. Overall, the
continuous optimization and innovation of GNNs have made
them a powerful tool for processing graph data. They are
widely applied in modeling and analyzing various complex
systems. As research continues, the capabilities of GNNs
will further improve, offering efficient solutions for a broader
range of domains.

Our works is based on the spectral perspective line. The
proposed model exploits the GCN to operate on a dense-
connected instance graph so that data structure information
can be jointly complemented with domain adaptation in a uni-
fied deep network.

3 Method
In unsupervised domain adaptation (UDA), we are given ns

labeled samples {(x(i)
S , y

(i)
S )}ns

i=1 from the source domain
DS , where x

(i)
S ∈ XS and y

(i)
S ∈ YS , with XS and YS rep-

resenting the source data space and label space, respectively.
Additionally, we are also provided with nt unlabeled target
samples {(x(i)

T )}nt
i=1, where x

(i)
T ∈ XT , and XT denotes the

target data space. It is assumed that XS and XT are different
but related. Our goal is to use the model trained on the source
domain to predict the unlabeled samples in the target domain.

The proposed graph domain adaptation framework is
shown in Figure 2. In the UDA task, when domain shift oc-
curs, the label prediction function f is trained by minimizing
the overall objective function, as detailed in Eq. 1:

L (XS ,YS ,XT ) = LC (XS ,YS) + λLDA (XS ,XT )

+ γLGAA (XS ,YS ,XT )
(1)

The LC (XS ,YS) denoted the classification loss.
LDA (XS ,XT ) and LGAA (XS ,YS ,XT ) present the do-
main alignment loss and graph-aware alignment loss,
respectively. The details are introduced as follows.

3.1 Domain Alignment
We use the domain adversarial similarity loss as the domain
alignment loss, as shown in Eq. 2. In this process, we intro-
duce an additional domain classifier D to distinguish whether
the features output by the feature extractor G come from the
source or target domain, while the goal of G is to make it im-
possible for D to differentiate between them. This two-player
minimax game is expected to reach an equilibrium, where the
features extracted by G are domain-invariant.

LDA (XS ,XT ) = Ex∈DS
[log(1−D(G(x)))]

+ Ex∈DT
[log(D(G(x)))]

(2)

3.2 Graph-aware Alignment
Existing domain alignment mechanisms typically focus on
aligning the global statistical information between the source

and target domains, often neglecting the structural informa-
tion within mini-batch samples. Traditional methods mainly
align domains by comparing global features, which may fail
to capture subtle relationships, thus limiting the performance
of UDA tasks. In UDA, the local relationships and struc-
tural information between samples are often more critical
than simple global statistics, particularly when faced with
complex cross-domain transfers. Ignoring these details can
lead to performance degradation. Increasing research has
demonstrated that the structural information of data plays a
crucial role in UDA tasks. Many advanced methods have
successfully incorporated structural information modeling,
significantly improving UDA performance. These methods
not only focus on global statistical features but also em-
phasize modeling local data structures, leading to a better
understanding and capturing of the complex relationships
between the source and target domains [Ma et al., 2019;
Zhang et al., 2024a].

To further enhance alignment performance in UDA, es-
pecially during deep learning-based training, we propose a
novel graph-aware alignment mechanism. This mechanism
effectively models the structural information of mini-batch
samples from both the source and target domains by intro-
ducing a graph structure. Specifically, we use the graph
structure to represent the similarity between samples and ap-
ply techniques like graph convolution to strengthen struc-
tural alignment between domains. This approach enables a
finer-grained alignment process, allowing for better capture
of the subtle differences between the source and target do-
mains. The method not only improves domain alignment
accuracy but also enhances the model’s generalization abil-
ity in the target domain, particularly when there are signifi-
cant data distribution differences between the domains, thus
reducing negative transfer and improving task performance.
Moreover, with the graph-aware alignment mechanism, the
model can intelligently adjust and optimize when transferring
across different domains, further expanding the application
scope of UDA methods. This structural alignment strategy
not only enhances the performance of traditional methods in
complex tasks but also provides a new approach for broader
cross-domain learning challenges. In particular, when data
distributions are drastically different, this mechanism can re-
duce information loss during alignment through fine-grained
structural alignment, further boosting the effectiveness and
robustness of transfer learning.

In graph domain adaptation, we first use a Data Structure
Analyzer (DSA) network to compute structure scores for each
mini-batch sample. Then, we combine these scores with the
features extracted from the samples through a Convolutional
Neural Network (CNN) to construct densely connected in-
stance graphs. Next, we apply a Graph Convolutional Net-
work (GCN) to these instance graphs to learn features that
effectively capture data structure information. Before de-
tailing our method, we briefly review the GCN model intro-
duced in [Kipf and Welling, 2016; Ma et al., 2019]. The core
goal of GCN is to learn layer-wise propagation operations
that can be directly applied to graph structures. Specifically,
given an undirected graph with m nodes and edges connect-
ing them, along with an adjacency matrix A ∈ Rm×m, the
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CNN
feature

CNN
feature

GNN

GNN𝜇

GNN𝜎!
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Figure 2: Overview of the GMM framework. In structure-aware alignment, the Data Structure Analyzer (DSA) network generates structure
scores that encode source data structure information, while features are extracted from the samples using Convolutional Neural Networks
(CNN). These structure scores and CNN features are then combined to construct densely connected instance graphs for further processing by
the Graph Convolutional Network (GCN).

linear transformation of graph convolution can be represented
as the product of the graph signal X ∈ Rk×m and the filter
W ∈ Rk×c:

Z = D̂− 1
2 ÂD̂− 1

2XTW (3)

where Â = A + I, I denotes the identity matrix, and D̂ii =∑
j Âij. In this formula, the output is a matrix Z of size

c × m. It is worth noting that the GCN can be constructed
by stacking multiple graph convolutional layers, as shown in
Eq. 3, with a non-linear operation applied after each layer.

Next, we will explain how to construct densely-connected
instance graphs for the GCN, and how to derive the graph
signal X and adjacency matrix A as shown in Eq. 3. Each
node in the instance graph corresponds to the feature of a
sample, which is extracted by a standard convolutional net-
work. Thus, the graph signal X can be obtained as follows:

X = CNN (Xb) (4)

where Xb represent a mini-batch of samples. To construct the
adjacency matrix Â, we feed the same mini-batch samples
into a Data Structure Analyzer (DSA) network to generate
structure scores, and then construct the adjacency matrix Â
based on these scores, as follows:

Â = XXT , (5)

where X ∈ Rb×d, b is the batch size, and d is the dimension
of the structure scores. Then we can obtain the latent variable

H:

H = δ (Z) (6)

Then, the mean vector µ and the variance vector σ are as
follows:

µ = δ
(
D̂−1/2ÂD̂−1/2HW1

)
σ = δ

(
D̂−1/2ÂD̂−1/2HW2

) (7)

Node embeddings Z can be obtained by sampling from
the posterior distribution N ∼ (µ,σ). In deep learning
models, sampling operations are typically non-differentiable,
which prevents direct backpropagation through gradient de-
scent, causing training difficulties. To address this issue, we
introduce a random variable ε that follows a standard normal
distribution, and transform the sampling process into a dif-
ferentiable operation. Specifically, the sampling operation is
transformed into the following form: Y = ε ∗ σ + µ, where
∗ denotes the dot product. This approach makes the sampling
process linear and differentiable, allowing the model to per-
form backpropagation during training. This not only ensures
the operability of the sampling process, but also effectively
avoids training issues caused by non-differentiability in tradi-
tional sampling methods, significantly improving the model’s
training efficiency and stability.

Based on the above discussion, we can formalize the infer-
ence process achieved through the GCN encoder as follows:
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q (Y | X,A) =

n∏
i=1

q
(
Yi | X,A

)
,

q
(
Yi | X,A

)
= N

(
Yi | µi, diag

(
σi

)2) (8)

where Zi is the i-th elements of Z,µ and σ are the i-th row
of µ and σ, respectively.

An inner product between latent variables is adopted as the
decoder to reconstruct the input graph’s topological structure,
More specifically,

Â = δ
(
Z (Z)

T
)

(9)

where Â is the reconstructed adjacency matrix. δ is the logis-
tic sigmoid function. We define Aij are the elements of A.
The generative process can be formalized as,

p (A | Y) =

n∏
i=1

n∏
j=1

p
(
Aij | Yi,Yj

)
,

p
(
Aij = 1 | Yi,Yj

)
= δ

((
Yi

)T
Yj

)
.

(10)

The initial variational lower bound of GMM in our model
consists of reconstruction loss and the KL divergence be-
tween the approximate posterior distribution q (Y | X,A)
and the initialized prior distribution P (Y) i.e. single Gaus-
sian distribution.

LGAA = Eq(Y|X,A) [p (A | Y)]−KL [q (Y | X,A) ∥p (Y)] .
(11)

3.3 Gaussian Mixture Model
The Gaussian Mixture Model (GMM) is a parametric proba-
bility density function, represented as a weighted sum of mul-
tiple Gaussian component densities. It describes the overall
distribution of data by combining multiple Gaussian distribu-
tions and is a widely used clustering algorithm in both aca-
demic research and industry. Due to its ability to effectively
model complex data distributions, we use GMM to partition
the feature representations of all classes into different clus-
ters. The formalization of GMM in UDA is described as fol-
lows:

p(x | λ) =
M∑
i=1

wig
(
x | µi,GMM ,Σi,GMM

)
(12)

where x represents the input feature vector of the data, and
wi denotes the mixture weights for each domain, satisfying
wi ≥ 0 and

∑M
i=1 w

i
t = 1. µi,GMM

t and Σi,GMM
t rep-

resent the mean vector and covariance matrix, respectively,
of the i-th Gaussian component in the two domains. λ =(
µi,GMM ,Σi,GMM

)
, where M is the total number of Gaus-

sian components. g
(
x | µi,GMM ,Σi,GMM

)
denotes the

Gaussian distribution density of the i-th component, where

each component is a D-dimensional Gaussian function.

g
(
x | µi,GMM ,Σi,GMM

)
=

1

(2π)D/2 |Σi,GMM |1/2

× exp

{
−1

2

(
x− µi,GMM

)′ (
Σi,GMM

)−1 (
x− µi,GMM

)}
(13)

Furthermore, to estimate the parameters of the GMM, we
use the Expectation-Maximization (EM) algorithm [Moon,
1996]. The GMM generates M clusters, denoted as Ki, i ∈
0, 1, . . . ,M − 1, where each cluster represents a set of snap-
shots exhibiting similar structural and attribute characteris-
tics.

Ki = GMM(z), i ∈ {0, 1, . . . ,M − 1}, (14)

The GMM can be accurately represented by a series of pa-
rameters, including the mean vector µGMM , the covariance
matrix ΣGMM , and the weights w of the two domains. We
update the prior distribution by adjusting the parameters of
the GMM to achieve joint iterative training. This approach
enables information sharing across multiple domains and op-
timizes the model parameters in each iteration, allowing it to
better adapt to the data distribution of different domains and
improve domain adaptation performance.

4 Experiments
4.1 Datasets
Office-31 [Saenko et al., 2010] is a widely used cross-domain
dataset, particularly applied in office environments, consist-
ing of 31 classes of images from three distinct domains: Ama-
zon (A), Webcam (W), and DSLR (D). The dataset is imbal-
anced in terms of the number of images, with 2,817 images
from Amazon, 795 images from Webcam, and 498 images
from DSLR.
Office-Home [Venkateswara et al., 2017] is a dataset com-
prising 15,500 photos from both home and business settings,
organized into 65 categories. The dataset consists of four dis-
tinct domains: Product (Pr), Clipart (Cl), Real-World (Rw),
and Art (Ar). These categories include real-world camera
captures, product photos, clipart images, and artistic render-
ings, respectively.
VisDA-2017 [Peng et al., 2017] contains over 280,000 im-
ages across 12 categories and presents a challenging bench-
mark for unsupervised domain adaptation (UDA). In our ex-
periments, we use the validation set as the target domain and
the training set as the source domain.
DomainNet [Peng et al., 2019] is a large-scale domain adap-
tation dataset with over 590,000 images spanning six do-
mains: Painting (pnt), Infograph (inf), Real (rel), Quickdraw
(qdr), Clipart (clp), and Sketch (skt). Each domain contains
items from 345 categories and is the largest image benchmark
for domain adaptation currently available.

4.2 Implementation Details
We use PyTorch to implement our technique, and the back-
bone network for all datasets is ResNet [He et al., 2016],
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Methods D→A W→A A→W D→W W→D A→D Avg.
ResNet-50 62.5 60.7 68.4 96.7 99.3 68.9 76.1
DDC 62.2 61.5 75.6 96.0 98.2 76.5 78.3
DAN 63.6 62.8 80.5 97.1 99.6 78.6 80.4
DANN 68.2 67.4 82.0 96.9 99.1 79.7 82.2
SymNet 73.4 71.6 88.6 98.2 99.7 85.3 86.2
CyCADA 72.8 71.4 89.5 97.9 99.8 87.7 86.5
CDAN 71.0 69.3 94.1 98.6 100.0 92.9 87.7
TADA 72.9 73.0 94.3 98.7 99.8 91.6 88.4
BSP 73.6 72.6 93.3 98.2 100.0 93.0 88.5
MCD 74.1 73.5 95.7 99.3 100.0 96.4 89.8
T2SA 78.2 78.5 94.6 97.2 99.8 92.4 90.1
GMM (Ours) 83.5 86.7 98.9 100.0 100.0 98.2 94.6

Table 1: Recognition accuracy (%) using the Office-31 dataset.

Method Ar→Cl
Ar→Pr

Ar→Rw
Cl→Ar

Cl→Pr
Cl→Rw

Pr→Ar
Pr→Cl

Pr→Rw
Rw→Ar

Rw→Cl
Rw →Pr

Avg.
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SAFN 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNet 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
T2SA 61.0 78.5 83.1 71.4 80.1 79.9 70.3 60.1 83.5 75.6 62.6 86.6 74.4
GMM (Ours) 65.7 79.3 85.7 73.4 79.2 82.5 73.9 63.4 85.6 82.9 70.4 93.5 78.0

Table 2: Recognition accuracy (%) using the Office-Home dataset.

Methods Synthetic → Real
DAN 53.0

DANN 57.4

SimNet 69.6

CDAN 70.0

MCD 73.7

DSAN 75.1

T2SA 83.2

CDAN+InterBN 88.3

Table 3: Recognition accuracy (%) using the VisDA-2017 dataset.

which has been pre-trained on ImageNet [Russakovsky et
al., 2015]. We used Pytorch [Paszke et al., 2019] to im-
plement all of the experiments. Our Stochastic Gradient
Descent (SGD) algorithm is used with momentum set to
0.9 and weight decay set to 0.001. For model optimiza-
tion, we follow the learning rate annealing technique de-
scribed in [Ganin et al., 2016]. In this study, we specifi-
cally specify λ = 0.5, γ = 1.0 and perform a sensitivity
analysis to find out how hyper-parameter selection affects
the results. We present the average accuracy from three ran-
dom trials for each task. We compare with the recent pop-
ular methods,e.g.,ResNet-50 [He et al., 2016],DDC [Tzeng
et al., 2014],DDC [Tzeng et al., 2014],DAN [Long et al.,
2015],DANN [Ganin et al., 2016],SimNet [Zhang et al.,
2019],CyCADA [Hoffman et al., 2018],CDAN [Long et
al., 2018],TADA [Hung et al., 2023],BSP [Chen et al.,

2019],MCD [Saito et al., 2018], T2DA [Li et al., 2021c],
SAFN [Xu et al., 2019],ADDA [Tzeng et al., 2017],
MIMTFL [Braytee et al., 2022], MDD [Li et al., 2020],
SCDA [Li et al., 2021b], CDAN+InterBN [Wang et al.,
2021].

4.3 Results
We present our results in Table. 1 to Table. 4. Our GMM
method significantly enhances the performance of the com-
pared state-of-the-art methods, achieving average accuracy
improvements of 4.5%, 4.4%, 5.1%, and 9.0% on the Office-
31, Office-Home, VisDA-2017, and DomainNet datasets, re-
spectively. Notably, we observe substantial accuracy gains
on some of the most challenging tasks, such as in the
Office-31 dataset, where D→A improved from 78.2% to
83.5% and W→A improved from 78.5% to 86.7%. On the
largest dataset, DomainNet, our GMM method also demon-
strates impressive performance with a 9.0% increase com-
pared to CDAN+InterBN. Importantly, across all four bench-
mark datasets, our proposed method outperforms all state-of-
the-art approaches. Additionally, the absence of adversarial
networks in our method further underscores its effectiveness.

4.4 Empirical Analysis
Distribution Discrepancy. The A-distance [Ben-David et
al., 2010] is a widely used metric for measuring the distance
between two distributions, with a larger A-distance indicat-
ing a greater distinction between the source and target do-
mains. However, the complexity of directly computing the
A-distance prompts us to use the proxy A-distance, d̂A, de-
fined as d̂A = 2(1 − 2ε). In our analysis, we compute
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ADDA clp inf pnt qdr rel skt Avg. DANN clp inf pnt qdr rel skt Avg. MIMTFL clp inf pnt qdr rel skt Avg.
clp - 11.2 24.1 3.2 41.9 30.7 22.2 clp - 15.5 34.8 9.5 50.8 41.4 30.4 clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 19.1 - 16.4 3.2 26.9 14.6 16.0 inf 31.8 - 30.2 3.8 44.8 25.7 27.3 inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 31.2 9.5 - 8.4 39.1 25.4 22.7 pnt 39.6 15.1 - 5.5 54.6 35.1 30.0 pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 15.7 2.6 5.4 - 9.9 11.9 9.1 qdr 11.8 2.0 4.4 - 9.8 8.4 7.3 qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 39.5 14.5 29.1 12.1 - 25.7 24.2 rel 47.5 17.9 47.0 6.3 - 37.3 31.2 rel 48.5 19.0 47.6 5.8 - 39.4 32.1
skt 35.3 8.9 25.2 14.9 37.6 - 25.4 skt 47.9 13.9 34.5 10.4 46.8 - 30.7 skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 28.2 9.3 20.1 8.4 31.1 21.7 19.8 Avg. 35.7 12.9 30.2 7.1 41.4 29.6 26.1 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1
ResNet-101 clp inf pnt qdr rel skt Avg. CDAN clp inf pnt qdr rel skt Avg. MDD clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2 clp - 20.4 36.6 9.0 50.7 42.3 31.8 clp - 20.5 40.7 6.2 52.5 42.1 32.4
inf 30.2 - 31.2 3.6 44.0 27.9 27.4 inf 27.5 - 25.7 1.8 34.7 20.1 22.0 inf 33.0 - 33.8 2.6 46.2 24.5 28.0
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8 pnt 42.6 20.0 - 2.5 55.6 38.5 31.8 pnt 43.7 20.4 - 2.8 51.2 41.7 32.0
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3 qdr 21.0 4.5 8.1 - 14.3 15.7 12.7 qdr 18.4 3.0 8.1 - 12.9 11.8 10.8
rel 48.4 22.2 49.4 6.4 - 38.8 33.0 rel 51.9 23.3 50.4 5.4 - 41.4 34.5 rel 52.8 21.6 47.8 4.2 - 41.2 33.5
skt 46.9 15.4 37.0 10.9 47.0 - 31.4 skt 50.8 20.3 43.0 2.9 50.8 - 33.6 skt 54.3 17.5 43.1 5.7 54.2 - 35.0

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 38.8 17.7 32.8 4.3 41.2 31.6 27.7 Avg. 40.4 16.6 34.7 4.3 43.4 32.3 28.6

SCDA clp inf pnt qdr rel skt Avg. CDAN
+InterBN clp inf pnt qdr rel skt Avg. GMM clp inf pnt qdr rel skt Avg.

clp - 18.6 39.3 5.1 55.0 44.1 32.4 clp - 21.4 41.8 9.5 51.3 45.7 33.9 clp - 23.4 45.7 18.9 56.7 45.5 38.1
inf 29.6 - 34.0 1.4 46.3 25.4 27.3 inf 28.9 - 26.7 4.5 37.5 21.9 23.9 inf 31.8 - 34.5 6.9 49.7 32.5 31.1
pnt 44.1 19.0 - 2.6 56.2 42.0 32.8 pnt 45.6 22.4 - 4.8 57.2 42.4 34.5 pnt 46.7 24.8 - 7.3 58.4 42.5 35.9
qdr 30.0 4.9 15.0 - 25.4 19.8 19.0 qdr 29.0 4.8 13.4 - 21.5 20.3 17.8 qdr 34.3 7.9 21.5 - 30.5 23.1 23.5
rel 54.0 22.5 51.9 2.3 - 42.5 34.6 rel 56.4 23.5 54.7 4.8 - 43.3 36.5 rel 55.7 24.8 56.4 10.5 - 45.3 38.5
skt 55.6 18.5 44.7 6.4 53.2 - 35.7 skt 59.2 22.2 48.5 11.7 57.3 - 39.8 skt 61.2 24.2 50.5 16.7 59.7 - 42.5

Avg. 42.6 16.7 37.0 3.6 47.2 34.8 30.3 Avg. 43.8 18.9 37.0 7.1 45.0 31.1 30.5 Avg. 45.9 21.0 41.7 12.1 51.0 37.8 39.5

Table 4: DomainNet accuracy (%) table for UDA (ResNet-101), each sub-table is arranged such that the column-wise domains represent the
source domains, while the row-wise domains are chosen as the target domains.
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Figure 3: (a): A-distance of different methods, (b): Sensitivity of λ, (c): Sensitivity of γ

this proxy A-distance for various models, including ResNet,
CDAN, T2SA, and GMM, specifically focusing on the feature
representations for the A → W task in Office-31. The results,
shown in Figure 3(a), reveal that GMM has the lowest proxy
A-distance among the evaluated methods.

Hyper-parameter Sensitivity. To further validate the effec-
tiveness of these hyper-parameter settings, we conducted ad-
ditional experiments under various conditions. Specifically,
we tested the performance of GMM on multiple datasets with
different characteristics, including varying sizes, noise lev-
els, and data distributions. The results consistently showed
that the optimal hyper-parameter combination of λ = 0.5 and
γ = 1.0 maintained superior performance across these di-
verse scenarios. Furthermore, we compared GMM with sev-
eral state-of-the-art methods under the same experimental set-
tings. Overall, these findings suggest that GMM is a reliable
and efficient approach for the given task, and the identified
optimal hyper-parameter settings can be applied broadly to
achieve consistent and high-quality results.

5 Conclusions

In this paper, we propose a novel method called Gaussian
mixture model for graph domain adaptation. Our approach
leverages the flexibility of GMM to model multi-modal data
distributions, effectively capturing the inherent complexity
and heterogeneity of real-world data. By integrating GMM
into the UDA framework, we enhance clustering performance
and improve domain alignment, thereby reducing the risk of
negative transfer and improving the robustness and scalability
of domain adaptation.
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