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Abstract
Credit assignment is a critical problem in multi-
agent reinforcement learning (MARL), aiming to
identify agents’ marginal contributions for optimiz-
ing cooperative policies. Current credit assignment
methods typically assume synchronous decision-
making among agents. However, many real-world
scenarios require agents to act asynchronously
without waiting for others. This asynchrony intro-
duces conditional dependencies between actions,
which pose great challenges to current methods.
To address this issue, we propose an asynchronous
credit assignment framework, incorporating a Vir-
tual Synchrony Proxy (VSP) mechanism and a
Multiplicative Value Decomposition (MVD) algo-
rithm. VSP enables physically asynchronous ac-
tions to be virtually synchronized during credit as-
signment. We theoretically prove that VSP pre-
serves both task equilibrium and algorithm conver-
gence. Furthermore, MVD leverages multiplica-
tive interactions to effectively model dependencies
among asynchronous actions, offering theoretical
advantages in handling asynchronous tasks. Exten-
sive experiments show that our framework consis-
tently outperforms state-of-the-art MARL methods
on challenging tasks while providing improved in-
terpretability for asynchronous cooperation.

1 Introduction
Multi-agent reinforcement learning (MARL) is promising for
many cooperative tasks, such as video games [Arulkumaran
et al., 2019] and collaborative control [Zhou et al., 2023].
MARL typically assumes a synchronous decision-making
setting, where all agents make decisions simultaneously and
their joint actions have the same duration. This assumption
simplifies the overall learning process [Oliehoek et al., 2016].

Despite the success of MARL in synchronous settings,
real-world tasks often exhibit asynchrony, i.e., agents can-
not complete their atomic actions simultaneously, because of
hardware constraints or the nature of agents’ actions [Wang
and Sun, 2021; Liang et al., 2023], as shown in Figure 1a.
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Figure 1: Illustration of various asynchronous MARL frameworks.
Blue/Yellow circles denote agent #x’s action ay

x at time step ty .
Small white circles denote padding actions. Stars denote action
completion. (a) Agents #2 and #3 must wait for agent #1 to finish
at t1 before making next decisions. (b) Agent #2 disregards action
a4
1 from t2 to t5. (c) Credit at t2 is attributed to the padding actions.

(d) Our proposed framework captures the interactions among asyn-
chronous decisions being executed at t2.

To address this issue, researchers have proposed two primary
mechanisms as follows. Discarding: Agents with varying
time step lengths collect data and update policies only when
they make decisions [Xiao et al., 2022], as shown in Figure
1b. Padding: Define a time step as the smallest indivisible
time unit and use padding actions to transform asynchronous
tasks into synchronous ones, so as to apply existing MARL
[Chen et al., 2021], as shown in Figure 1c.

Nevertheless, both discarding and padding struggle to ad-
dress complex asynchronous cooperative tasks. Their failure
is due to an inability to resolve the credit assignment problem,
caused by the following two limitations. (1) Bias introduced
in evaluating the global impacts of asynchronous actions.
On one hand, the discarded information leads to biased eval-
uations of the impacts of decisions from other agents. As
shown in Figure 1b, agent #2 discards the information of ac-
tion a13 and a41, neglecting their impacts on agent #2’s tran-
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sition from t2 to t5. On the other hand, the padding actions
introduce bias in credit assignment. As shown in Figure 1c,
the algorithm assigns credit at t2 mainly to the two padding
actions, rather than actions a01 and a13. (2) Inability to model
conditional dependencies between asynchronous actions.
In MARL, value decomposition (VD) and its variants [Sune-
hag et al., 2018; Rashid et al., 2020] are widely used syn-
chronous credit assignment methods. They learn the marginal
contribution of each agent and decompose the global Q-value
Qtot into individual agent-wise utilities Qi to guide agents’
behaviors. However, most VD algorithms have limitations
in accounting for higher-order interactions [Liu et al., 2023].
They fail to capture the conditional dependencies between de-
cisions made by agents asynchronously, such as the depen-
dency of the current decision a22 on the actions being exe-
cuted, a01 and a13, as shown in Figure 1c.

In this paper, we propose an asynchronous credit assign-
ment framework that incorporates a Virtual Synchrony Proxy
(VSP) mechanism and a Multiplicative Value Decomposi-
tion (MVD) algorithm. Inspired by virtual synchrony in dis-
tributed systems [Dolev et al., 2018], our VSP introduces
virtual proxies to migrate asynchronous actions to a unified
time step. This allows actions a01, a22, and a13 in Figure 1d to
appear synchronized at t2, facilitating better capturing their
global impacts. We have proven that VSP preserves both the
task equilibrium and the algorithm convergence. Based on
VSP, we derive the multiplicative value decomposition for-
mula as well as its higher-order forms and propose MVD.
Our MVD leverages multiplicative interactions [Rumelhart
and McClelland, 1987; Jayakumar et al., 2020] to capture
dependencies among asynchronous actions and we demon-
strate its superior representational capacity compared to tra-
ditional VD algorithms. Moreover, we present three practi-
cal implementations of MVD. We evaluate MVD on a mod-
ified asynchronous variant of the classic MARL benchmark
SMAC [Samvelyan et al., 2019], along with two prominent
asynchronous benchmarks: Overcooked [Wang et al., 2020b]
and POAC [Yao et al., 2021]. Extensive experimental results
show that MVD achieves considerable performance improve-
ments in complex scenarios and provides easy-to-understand
interaction processes among asynchronous decisions.

Our contributions are summarized as follows: (1) We pro-
pose an asynchronous credit assignment framework with VSP
and MVD, capable of capturing high-order dependencies
among asynchronous actions. (2) Theoretically, we prove
the correctness of VSP and demonstrate the advantages of
MVD. (3) Experimentally, we show MVD’s effectiveness
across three asynchronous tasks, achieving significant perfor-
mance gains and interpretable interaction processes.

2 Related Works
Despite the significant progress in MARL, most existing
works rely on the premise of synchronous decision-making
which does not reflect reality in many practical applications.
The easiest way to adapt MARL from synchronous to asyn-
chronous decision-making is to split actions into sub-actions
or wait for others to finish before making the next decisions.
Evidently, these methods raise training costs and lower effi-

ciency. Thus, several works have been conducted to exploit
the strengths of MARL in asynchronous settings.

The discarding type methods recognize asynchronous ac-
tions with varying durations as a whole and focus solely on
the decision information. ASM-PPO [Liang et al., 2022] and
ASM-HPPO [Liang et al., 2023] propose that each agent col-
lects its own decision information and utilize MAPPO [Yu
et al., 2022] for training. MAC IAICC [Xiao et al., 2022]
treats asynchronous actions as macro-actions [Theocharous
and Kaelbling, 2003] and models the task as a MacDec-
POMDP [Amato et al., 2019]. CAAC [Wang and Sun, 2021]
focuses on the bus holding control [Daganzo and Ouyang,
2019] and utilizes a graph attention network to capture the
influence of agents’ asynchronous decisions.

The padding type methods transform asynchronous prob-
lems into synchronous ones through padding action, thereby
obtaining Dec-POMDP [Oliehoek et al., 2016] and apply-
ing existing MARL methods. Since Dec-POMDP requires
the collection of decision information from all agents at each
time step, the padding action can be used as a substitute for
the decision information of agents that are executing actions.
VarLenMARL [Chen et al., 2021] employs the most recent
action for padding during the collection of joint transitions.
EXP-Ms [Jia et al., 2020] considers ongoing actions as idle,
treating them as blank actions.

However, there still remains a lack of theoretical and visual
analysis on asynchronous credit assignments, hindering the
resolution of complex asynchronous cooperative tasks.

3 Preliminaries
3.1 Dec-POMDP
A fully cooperative multi-agent task with synchronous
decision-making is typically formulated as a Dec-POMDP.
Dec-POMDP is defined as a tuple ⟨N ,S,A,P, r, O,Ω, γ⟩,
where N is a set of n agents and s ∈ S is a global state of
the environment. At each time step, each agent i ∈ N ob-
tains its own observation oi ∈ Ω determined by the partial
observation O(s, i) and selects an action ai ∈ A to form a
joint action a = [ai]

n
i=1 ∈ An. Subsequently, all agents si-

multaneously complete their actions, leading to the next state
s′ through the transition function P(s′|s,a) : S × An → S
and to the global reward r(s,a) : S × An → R. Each agent
i has its own policy πi(ai|τi) : T × A → [0, 1] based on
local action-observation history τi ∈ T . The objective of all
agents is to find an optimal joint policy π = [πi]

n
i=1 and max-

imize the global value function Qπ = E[
∑∞

t=0 γ
trt+1] with

a discount factor γ ∈ [0, 1).

3.2 Credit Assignment and Value Decomposition
Credit assignment is a key challenge in designing reliable
MARL methods [Oroojlooy and Hajinezhad, 2023]. It fo-
cuses on attributing team success to individual agents based
on their respective marginal contributions, aiming at col-
lective policy optimization. VD algorithms are the most
popular branches in MARL. They leverage global informa-
tion to learn agents’ contributions and decompose the global
Q-value function Qtot(s,a) into individual utility functions
Qi(τi, ai). In the execution phase, agents cooperate via their

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

corresponding Qi(τi, ai), thereby realizing centralized train-
ing and decentralized execution (CTDE) [Oliehoek et al.,
2008]. Traditional VD algorithms, including VDN [Sunehag
et al., 2018], QMIX [Rashid et al., 2020], and Qatten [Yang
et al., 2020b], can be represented by the following general
additive interaction formulation [Li et al., 2022]:

Qtot = Qtot(s,Q1, Q2, · · · , Qn) = k0 +
n∑

i=1

kiQi, (1)

where k0 is a constant and ki denotes the credit that reflects
the contributions of Qi to Qtot.

To capture high-order interactions that traditional VD al-
gorithms ignored, NA2Q [Liu et al., 2023] employed a gen-
eralized additive model (GAM) [Hastie, 2017]:

Qtot = f0 +
n∑

i=1

kif
1
i (Qi) + · · ·+

∑
j∈Dl

kjf
l
j(Qj)

+ · · ·+ k1···nf
n
1···n(Q1, · · · , Qn),

(2)

where f0 is a constant, f l
j captures l-order interactions among

agents j in Dl. Dl is the set of all size-l subsets of {1, · · · , n},
1 ≤ l ≤ n. The utility Qj of agent j is the input of f l

j .
In order to maintain the consistency between local and

global optimal actions after decomposition, these VD al-
gorithms should satisfy the following individual-global-max
(IGM) principle [Son et al., 2019]:

argmax
a

Qtot(s,a) =

 argmaxa1
Q1(τ1, a1)
...

argmaxan
Qn(τn, an)

 . (3)

For example, QMIX holds the monotonicity ∂Qtot

∂Qi
≥ 0 and

achieves IGM between Qtot and Qi. More details of VD and
other credit assignment methods are in Appendix A.

4 Virtual Synchrony Proxy
In asynchronous scenarios, system dynamics depend on ac-
tions taken at different times, yet existing methods fail to cap-
ture the global impacts of these asynchronous actions. The
discarding mechanism overlooks the contributions of other
agents’ decisions. One padding approach uses the most recent
action to synchronize decisions. For example, in Figure 1c,
agent #1 selects a01 as its padding actions at t2. However, this
introduces ambiguity since it cannot distinguish whether a01 is
being continued or restarted at t2. Another padding approach
uses blank actions to distinguish between decision-making
and action execution, thereby avoiding ambiguity. Neverthe-
less, as shown in Figure 1c, the credit for agent #1 at t2 is
incorrectly assigned to the blank action rather than to a01.

Our VSP is inspired by virtual synchrony, which offers
an abstraction layer that ensures asynchronous messages are
processed synchronously in distributed systems. Similarly,
VSP employs virtual proxies to align asynchronous actions,
allowing credit to be assigned at a unified time step. The
general idea is as follows. To avoid ambiguity, VSP uses a
blank action as padding when agent i is continuing action ai.
Meanwhile, to ensure semantic consistency, VSP introduces
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Figure 2: At t2, a0
1 and a1

3 are executing. (a) Virtual proxies #1′

and #3′ are introduced to re-execute a0
1 and a1

3. (b) The policies of
agent #1 and #3 for a0

1 and a1
3 are updated through their proxies.

a virtual proxy i′ at each time step when agent i is execut-
ing action ai. The proxy i′ shares the same policy as agent
i and re-executes action ai. Therefore, when the policies of
the proxies #1′ and #3′ are updated with assigned credit at
t2, the policies of the corresponding agents #1 and #3 are
updated as well, as shown in Figure 2.

We integrate the VSP mechanism into Dec-POMDP to
model asynchronous decision-making problems. Before pre-
senting the detailed formulation, the frequently used defini-
tions are outlined below. Asynchronous action refers to an
action that requires multiple time steps to complete, e.g., ac-
tion a01 spans over four time steps in Figure 2. The observa-
tion for making a decision is denoted as õi, referring to the
most recent observation upon which an agent i makes the de-
cision to execute a new asynchronous action. ãi denotes the
most recent new decision made by the agent i.
Definition 1 (Dec-POMDP with VSP). Dec-POMDP with
VSP is a tuple ⟨N̂ , I, Ŝ,A, P̂, r̂, Ô,OP ,Ω, γ⟩, where N̂ =
{N ,N ′}, with N as the real agent set and N ′ as the vir-
tual proxy set. At each time step t, the agents are divided
into two disjoint sets: id ∈ Nd, the agent making the de-
cision, and ic ∈ Nc, the agent executing the action. Time
step index t is omitted for simplicity. Given an original state
s ∈ S, function I(s) returns a subset N ′

c ⊆ N ′, where proxy
i′c ∈ N ′

c and agent ic ∈ Nc form an real-virtual pair ⟨ic, i′c⟩.
The agent ic and the proxy i′c in this pair have the same pol-
icy. ŝ = [s; õc] ∈ Ŝ , where [·; ·] is the concatenation oper-
ation. s is the original state and õc is obtained according
to OP(õc|s), which is the joint observation of all agents ic
for making decisions. Each proxy i′c receives oi′c = õic ∈ Ω

according to Ô(ŝ, i′c) and selects action ai′c = ãic to form
â = [a; ãc] ∈ An+n′

c , where n′
c = |N ′

c|, a ∈ An is the
original joint action, and ãc is the most recent joint decision
made by all agents ic. Subsequently, they move to the next
state ŝ′ according to P̂(ŝ′|ŝ, â) = OP(õ

′
c|s′)P(s′|s,a) and

earn a joint reward r̂(ŝ, â) = r(s,a)1.
To ensure consistent dimensions of the extended state ŝ and

action â, virtual proxies are introduced for decision-making
1This setup allows us to investigate the effect of asynchronous

actions ãc on the reward r(s,a).
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agents id ∈ Nd and action-executing agents ic ∈ Nc at each
time step, with proxies for agents id masked out.

Our VSP improves the training efficiency without increas-
ing the complexity. Since a virtual proxy shares policy with
the corresponding real agent, the introduction of a proxy does
not expand the policy space. Furthermore, during the execu-
tion of action a13 in Figure 2, virtual proxy #3′ is repeatedly
introduced, enabling multiple updates to the shared policy as-
sociated with action a13. This significantly accelerates con-
vergence, as demonstrated by the ablation studies in Section
6.2. Theoretically, we prove that VSP preserves the inherent
characteristics of the task and the solution process.
Theorem 1. Given an asynchronous decision-making task,
define π∗

Dec and π∗
V SP as the Markov Perfect Equilibrium

(MPE) respectively for modeling as a Dec-POMDP and a
Dec-POMDP with VSP. T ∗

Dec and T ∗
V SP as the VD opera-

tor for the same. Assuming that T ∗
Dec converges to the MPE

of this task, i.e., π∗
Dec, then:

(1) π∗
V SP = π∗

Dec
2;

(2) Given the same initial joint policy π0, T ∗
Dec and T ∗

V SP
converge to the same MPE.

Proof. Please see Appendix B.

5 MVD
5.1 Multiplicative Interaction Form
Based on VSP, asynchronous credit assignment can be ad-
dressed in a synchronized manner within a single time step.
According to the unified framework of general VD algo-
rithms, the global Q-value Qtot with VSP mechanism is for-
mulated in terms of individual utilities Qi as follows:

Qtot = Qtot(s,Q1d , · · · , Qnd
, Q1c , · · · , Qnc , Q1′c , · · · , Qn′

c
).

(4)
In asynchronous tasks, the agent who executes first must

predict how later choices of other agents would affect its ex-
ecution. Meanwhile, the agent who executes later needs to
consider the impact of the current actions of other agents on
its decision. This conditional dependency is represented in
Eq. (4) as the interaction between Qid and Qi′c . Considering
the benefits of multiplicative interactions for fusing informa-
tion streams and enabling conditional computation [Rumel-
hart and McClelland, 1987; Jayakumar et al., 2020], we en-
rich Eq. (1) by incorporating multiplicative interactions to
capture these dependencies. We propose the general Multi-
plicative Value Decomposition (MVD) formula:

Qtot = k0 +

n+n′
c∑

i

kiQi +
∑
id,i′c

kidi′cQidQi′c . (5)

The detailed derivations are provided in Appendix C.1. We
derive Eq. (5) by performing a Taylor expansion of Qi near an
optimal joint action, providing support for the multiplication
operation present in the value decomposition process.

Furthermore, compared to the traditional additive inter-
action VD, the multiplicative interaction between Qid and

2Since VSP does not affect the policy space, the joint policy can
still be denoted by π from Dec-POMDP with n agents.

Qi′c in MVD significantly boosts representational capabil-
ity in learning interactions among agents. For Eq. (1), the
gradient for updating Qi is ∂Qtot

∂Qi
= ki. In contrast, the

gradients from Eq. (5) are ∂Qtot

∂Qid
= kid +

∑
i′c
kidi′cQi′c ,

∂Qtot

∂Qi′c
= ki′c +

∑
id
kidi′cQid , and ∂Qtot

∂Qic
= kic . Therefore,

MVD integrates the nonlinear interactions as contextual in-
formation, allowing Qid and Qi′c to refine their policies based
on their mutual influence. We prove that MVD bears advan-
tages in handling asynchronous tasks over traditional VD.

Theorem 2. Given an asynchronous decision-making task,
define QAdd as the function class for the additive VD opera-
tor T ∗

Add, and QMul as the function class for the multiplica-
tive interaction VD operator T ∗

Mul, then:

QAdd ⊊ QMul.

Proof. Please see Appendix B.

5.2 High-Order Interaction Form
Eq. (5) primarily considers the interaction of Qid and Qi′c .
However, as illustrated in Figure 2a, the actions a01 and a13 re-
executed by virtual proxies #1′ and #3′ at t2 actually orig-
inate from different time steps. This implies interactions be-
tween Q1′ and Q3′ , thereby indicating high-order interactions
among Q1′ , Q3′ , and Q2. Therefore, we propose a K-th order
(where 1 ≤ K ≤ n) interactive VD formula as follows:

Qtot = k0 +

n+n′
c∑

i

kiQi +
∑
id,i′c

kidi′cQidQi′c

+ · · ·+
∑

id,i′c,1,··· ,i′c,K−1

kidi′c,1···i′c,K−1
QidQi′c,1

· · ·Qi′c,K−1
.

(6)
The detailed derivations are provided in Appendix C.2.

Based on the derivation of Eq. (6), as the order increases, the
error introduced by Taylor expansion decreases and agents
are able to obtain deeper interactive information. Neverthe-
less, higher-order interaction complicates the model and does
not necessarily lead to better final performance [Wen et al.,
2019; Liu et al., 2023]. Our ablation studies in Section 6.2
further confirm this conclusion. Therefore, we primarily fo-
cus on multiplicative interactions between Qid and Qi′c .

5.3 Implementation
Finally, we discuss the issue of IGM consistency in the prac-
tical implementation of MVD. In Dec-POMDP with VSP, the
agent ic currently executing an action does not need to choose
a new one, and virtual proxy i′c can only execute the asyn-
chronous actions of ic. This implies that agent ic and proxy
i′c do not need to satisfy the IGM condition. Consequently,
we obtain the MVD-based IGM as follows:

argmax
a

Qtot(s,a) = ( argmax
a1d

Q1d(τ1d , a1d),

· · · , argmax
and

Qnd
(τnd

, and
),

a1c , · · · , anc , a1′c , · · · , an′
c
).

(7)
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Figure 3: The overall framework of MVD. Left: Mixing network structure. In red are the hypernetworks that generate the weights and biases
for mixing network. Middle: The overall MVD architecture. Right: Agent network structure.

To maintain the monotonicity between Qtot and Qid , i.e.,
∂Qtot

∂Qid
≥ 0, we derive the following form that satisfies MVD-

based IGM and employ hypernetworks [Ha et al., 2017] fi(s)
to learn the corresponding weights. Since Qi′c may be less
than 0, we track the minimum Qi′c during training and denote
it as Qmin

c , ensuring Qi′c + Qmin
c ≥ 0. The detailed deriva-

tions are provided in Appendix C.3.

Qtot ≈ f0+

n+n′
c∑

i

|fi|Qi+
∑
id,i′c

|fidi′c |
Qi′c +Qmin

c

2
Qid . (8)

The overall framework of MVD is illustrated in Figure 3.
We propose three distinct practical implementations of the
mixing network. The first approach directly calculates the
final global Q value based on Eq. (8), denoted as Qd

tot. The
second approach employs a multi-head structure that allows
the mixing network to focus on asynchronous interaction in-
formation from different representation sub-spaces, thereby
enhancing the representational capability and stability. Each
head calculates a global Q-value based on Eq. (8), and inputs
it into a Softmax function to obtain the final global Q-value,
denoted as Qs

tot. The third approach also employs a multi-
head mechanism. To simplify the model, we use a ReLU
activation function and an MLP to replace the Softmax func-
tion in the second implementation, denoted as Qm

tot. In this
paper, we primarily focus on the third implementation, and
comparisons with the others are discussed in Section 6.2. The
pseudo-code for MVD is in Appendix D.

6 Experiments
In this section, we evaluate our MVD on a modified asyn-
chronous variant of SMAC and two existing asynchronous
benchmarks: Overcooked and POAC. SMAC is a widely
used testbed for MARL algorithms. Our asynchronous vari-
ant introduces asynchronous actions, where allied agents re-
quire different time steps to complete their movements. Over-
cooked requires agents to prepare ingredients in sequence and
cooperate to make salads. Different actions, such as chop-
ping, moving to ingredients, and delivering, span varying
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Figure 4: Performance on two challenging asynchronous scenarios

time steps. POAC is a confrontation wargame between two
armies with three unit types, each having distinct attributes
and action execution times. The goal is to learn asynchronous
strategies to defeat the rule-based bots.

The baselines fall into three categories: (1) The decentral-
ized training and decentralized execution (DTDE) method,
IPPO [de Witt et al., 2020], treats other agents as part of the
environment and is applicable to asynchronous tasks. (2) The
discarding type method, MAC IAICC, which is the most ad-
vanced algorithm in [Xiao et al., 2022]. (3) Credit assignment
algorithms based on padding type method, including QMIX,
Qatten, SHAQ [Wang et al., 2022], ICES [Li et al., 2024],
and NA2Q that considers 2nd-order interactions3.

Details of benchmarks, baselines, and our MVD are pro-
vided in Appendix E. The graphs illustrate the performance
of all compared algorithms by plotting the mean and standard
deviation of results obtained across five random seeds.

6.1 Benchmark Results
We run experiments across multiple benchmarks, focusing on
three key aspects of our framework in asynchronous cooper-
ation: the necessity of additional computation, effectiveness
against baselines, and generalization in complex tasks.

3We excluded other asynchronous MARL algorithms in the sec-
tion of Related Works due to their specificity to tasks with individual
agent rewards or lack of open-source code.
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Figure 6: Mean test return on Overcooked benchmark.

We first investigate why the additional computations intro-
duced by VSP and MVD are necessary for asynchronous co-
operation. As shown in Figure 4, in the super hard scenario
of asynchronous SMAC and map B of Overcooked, both dis-
carding and padding methods fail to handle asynchronous
cooperation effectively. In contrast, MVD employs virtual
proxies and multiplicative interactions to better capture the
marginal contributions of asynchronous actions, significantly
accelerating convergence. The complete experimental re-
sults and analysis are provided in Appendix F. These results
show that while most baselines perform well in simple asyn-
chronous scenarios, they struggle in complex tasks.

We then analyze the specific performance comparison
against baselines on map A of Overcooked, as shown in Fig-
ure 6. The results indicate that MVD surpasses all baselines.
Both IPPO and MAC IAICC exhibit slower training speeds.
This suggests the discarding type methods suffer from low
efficiency. NA2Q and SHAQ mistakenly consider the influ-
ence among padding actions, resulting in non-convergence.
This implies that Dec-POMDP with padding action is also un-
suitable for asynchronous settings. Although ICES enhances
exploration, it is less effective than MVD as it neglects the
interplay between asynchronous actions. QMIX and Qatten

perform better than NA2Q because they use simpler models
to handle credit assignment, leading to stronger robustness
to padding action. Furthermore, MVD outperforms baselines
on other maps of Overcooked. The complete experimental
results and analysis are in Appendix F.2.

We further validate the generalization of MVD on the chal-
lenging POAC. Figure 5 shows the win rate across scenar-
ios with increasing difficulty levels. We observe that MVD
demonstrates increasingly better performance. IPPO and
MAC IAICC train slowly in simple scenarios and fail in com-
plex tasks. Compared to Overcooked, POAC contains fewer
asynchronous actions, resulting in less padding when using
Dec-POMDP. Therefore, NA2Q performs relatively better
among the baselines. However, due to the interference from
padding action and the complexity of the adopted model, the
training efficiency of NA2Q is consistently inferior to that
of MVD, a result also observed in SHAQ and ICES. The
additive interaction VD algorithms, QMIX and Qatten, do
not yield satisfactory performance, since they cannot handle
the mutual influence among agents in complex asynchronous
tasks. Furthermore, MVD demonstrates highly competitive
performance in other scenarios of POAC. The complete ex-
perimental results and analysis are in Appendix F.3.

6.2 Ablation Studies
To obtain a deeper insight into our proposed VSP and MVD,
we perform ablation studies to illustrate the impact of the fol-
lowing factors on the performance: (1) The introduction of
virtual proxies. (2) The interactions of different orders among
agents. (3) The distinct practical implementations of MVD.

For evaluating the impact of factor (1), we extend QMIX
and Qatten with VSP, denoting them as QMIX(A) and Qat-
ten(A). As shown in Figure 7a, the introduction of virtual
proxies does not complicate the problem but instead notably
improves the performance of QMIX and Qatten, highlighting
the powerful advantages of VSP in an asynchronous setting.
However, they fail to capture the mutual influence among
agents, leading to poorer performance than MVD. We also
extend other VD algorithms with VSP. The complete ablation
experiments and analysis are in Appendix G.1.
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Figure 7: Ablation Studies of MVD on scenario 5 of POAC benchmark.
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Figure 8: Visualization of evaluation for (a) MVD and (b) NA2Q.

For evaluating the impact of factor (2), we consider MVD
and NA2Q with l-th order interactions under VSP, denot-
ing them as MVD(l) and NA2Q(l). As shown in Figure 7b,
the performance of MVD(2) incorporating multiplicative in-
teractions consistently outperforms MVD(1) which does not
consider interactions between agents. Further, both MVD(3)
and NA2Q(3) suffer from performance degradation due to in-
creased model complexity. Therefore, additive interactions,
which ignore interactions, are insufficient for solving the
asynchronous credit assignment problem, while higher-order
interactions increase complexity and degrade performance.
In contrast, the multiplicative interaction between Qid and
Qi′c efficiently addresses these issues. The complete ablation
experiments and analysis are in Appendix G.2.

For evaluating the impact of factor (3), we compared three
different practical implementations of MVD. As shown in
Figure 7c, directly applying Eq. (8) to obtain Qd

tot converges
to the optimal joint policy, yet it suffers from slow training
speed and instability. Employing a multi-head structure can
effectively address these issues. However, using Softmax to
obtain Qs

tot excessively complicates the entire mixing net-
work. Therefore, MVD derives the greatest benefit from MLP
with the ReLU activation function. The complete ablation ex-
periments and analysis are in Appendix G.3.

6.3 Interpretability
To visually illustrate the asynchronous credit assignment pro-
cess, we exhibit key frames from scenario 5 of POAC and
compare the converged MVD and NA2Q with VSP. The ar-
rows in the figures represent the movements or attacks of the

agents. We highlight the individual Qi and crucial weights
within the mixing network to demonstrate their alignment
with agents’ asynchronous behaviors. fij represents the col-
laborative contribution of two agents to the global outcome.

Figures 8a and 8b depict similar scenarios: one of our
units lures the enemy deeper into the field, while another at-
tack. Since the former is executing a movement action and
the latter is making an attack decision, their decision-making
is asynchronous. As shown in Figure 8a, the infantry suc-
cessfully attacks an enemy, leading to a higher Q3, while the
chariot is under attack, resulting in a negative Q2′ . MVD
accurately attributes the importance of their asynchronous
cooperation to the entire team using multiplicative interac-
tion and assigns a higher credit f32′ . As shown in Fig-
ure 8b, similarly, the infantry that successfully attacks ene-
mies has a higher Q3, whereas the tank used to kite enemies
has a lower Q1′ . Both the tank and the chariot are execut-
ing actions, yet NA2Q mistakenly regards the asynchronous
infantry-chariot cooperation as more important than infantry-
tank cooperation. Therefore, even though both strategies ul-
timately achieve victory, MVD offers a superior ability to
capture the interplay between agents’ asynchronous decision-
making, providing higher interpretability.

7 Conclusion and Future Work
In this paper, we propose an asynchronous credit assignment
framework incorporating the VSP mechanism and the MVD
algorithm. Our framework fully captures the dependencies
between asynchronous decisions and provides a solid basis
for further exploration of asynchronous MARL. VSP syn-
chronizes asynchronous actions without disrupting task equi-
librium or VD convergence. MVD introduces multiplicative
interactions, strictly extending the function class and effec-
tively capturing the interplay between asynchronous actions.
Extensive experiments demonstrate that MVD outperforms
baselines, particularly in complex asynchronous tasks, and
provides interpretability for asynchronous cooperation. One
direction for future work involves exploring effective repre-
sentations of higher-order asynchronous interactions and ad-
dressing asynchronous cooperation in large-scale systems.
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