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Abstract

Multimodal hashing projects multimodal data into
compact binary codes, enabling rapid and storage-
efficient retrieval of large-scale multimedia con-
tent. In practical scenarios, the issue of miss-
ing modality frequently arises when dealing with
multimodal data. Existing incomplete multimodal
hashing techniques directly recover missing modal-
ities by neural networks, resulting in a disjointed
representation space between the recovered and
true data. In this paper, we present a novel recovery
paradigm, namely Prototype-based Modality Com-
pletion Hashing (PMCH). Instead of directly syn-
thesizing it from available modalities, PMCH adap-
tively aggregates associated within-modality pro-
totypes to recover missing modality data. Specif-
ically, PMCH introduces an within-modality pro-
totype learning module to optimize representa-
tive prototypes for each modality. These proto-
types act as recovery anchors and reside within the
same representation space as their corresponding
modality data. Subsequently, PMCH adaptively
aggregates the associated within-modality proto-
types with coefficients derived from the modality-
specific Weight-Net. By utilizing prototypes from
the same modality, the semantic disparity between
the reconstructed and authentic data can be substan-
tially diminished. Extensive experiments on three
widely used benchmark datasets demonstrate that
PMCH can effectively recover the missing modal-
ity, and attain state-of-the-art performance in both
complete and incomplete multimodal retrieval sce-
narios. Code is available at https://github.com/
Sasa77777779/PMCH.git.

1 Introduction
Hashing [Wu et al., 2019; Zhang12 et al., 2019; Zhang et al.,
2020; Zhang et al., 2021; Zhang et al., 2022; Wu et al., 2022a;

∗Corresponding author

Figure 1: Two paradigms for missing modality recovery. (a) Typical
paradigm exploits neural networks to generate missing data from
the other (available) modality. (b) Our method aggregates within-
modality prototypes for recovery. (c) T-SNE visualization of recov-
ered and ground-truth modality representations between NCH [Tan
et al., 2023] (upper) and our PMCH (down). Clearly, ours exhibits
closer representation spaces (overlapping of browns and greens).

Wu et al., 2023; Wu et al., 2024] aims to transform high-
dimensional data into compact low-dimensional hash codes,
thereby reducing retrieval complexity. As the scale of multi-
modal data rapidly expands, multimodal hashing [Shen et al.,
2018; Lu et al., 2019b; Zheng et al., 2020; An et al., 2022]
has garnered significant attention for its remarkable capabil-
ity to enable large-scale multimodal retrieval with low storage
costs and high retrieval efficiency. Unlike cross-modal hash-
ing [Shen et al., 2020; Kang et al., 2023; Chen et al., 2024;
Liu et al., 2024; Sun et al., 2024] which focuses on learn-
ing a shared space for different modalities to enable cross-
modal search, multimodal hashing aims to create a comple-
mentary space by fusing different modalities for concise re-
trieval. However, multimodal hashing often assumes com-
plete modalities for each sample, which is often unavailable
in real-world scenarios. For example, in social networks, the
privacy or security constraints on uploaded images and texts
make it challenging to access multimodal data.

The primary challenge of this incomplete multimodal hash-
ing is how to recover the miss modality data. As shown in

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/Sasa77777779/PMCH.git
https://github.com/Sasa77777779/PMCH.git


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Fig. 1(a), previous method like NCH [Tan et al., 2023] di-
rectly recovers the missing modality features from available
ones of another modality, which usually introduces a opti-
mized neural network in a generative manner. However, this
inevitably leads to the distribution gap between the generated
data and the original data of miss modality, which is also
verified by the empirical results of T-SNE visualizations in
Fig. 1(c). Clearly, NCH shows distinct distribution gap be-
tween the representations of the recovered text features (de-
picted as brown points) and the ground-truth text features (de-
picted as green points).

To address the aforementioned challenges, we design a
novel modality recovery paradigm for multimodal hash-
ing, named Prototype-based Modality Completion Hashing
(PMCH). PMCH performs data recovery by adaptively ag-
gregating learned within-modality prototypes. Specifically,
PMCH consists of two key components: Within-modality
Prototype Learning Module (PLM), and Weight-Net based
Prototype Aggregating Module (PAM). The PLM first de-
signs a set of learnable prototypes for each modality, then uti-
lizes a relation-driven prototype loss to transfer the modality-
and category-specific information from available features.
The PAM utilizes a modality-specific Weight-Net to dynam-
ically learn the coefficients from the available modality data,
enabling adaptive aggregation of missing modality proto-
types. Since the within-modality prototypes reside in the
same representation space as their corresponding features,
the domain gap issue empirically observed in previous meth-
ods can be alleviated. Employing prototypes within the same
modality for recovering missing data significantly minimizes
the semantic discrepancy between the reconstructed and orig-
inal data. The main contributions of this paper are summa-
rized as follows:

• We propose a novel incomplete multimodal hash-
ing framework called PMCH, that completes missing
modalities by adaptively aggregating learned within-
modality prototypes. PMCH can effectively mitigate the
domain discrepancy between the recovered data and the
authentic one.

• We meticulously devise a PLM module and a PAM mod-
ule for modality and category-specific prototype learn-
ing and aggregation, respectively. The two modules can
work seamlessly to directly reconstruct missing modal-
ity data with within-modality prototypes, thereby en-
hancing the authenticity of the recovered data.

• Extensive experiments conducted on three widely
used benchmark datasets demonstrate that our PMCH
achieves state-of-the-art performance in both complete
and incomplete multimodal retrieval scenarios.

2 Related Work
The multimodal hashing methods aim to learn unified
and semantic-rich binary representations by fusing different
modalities [Liu et al., 2012; Song et al., 2013; Shen et al.,
2015; Liu et al., 2015; Wang et al., 2015; Yang et al., 2017;
Liu et al., 2018; Lu et al., 2019b; Lu et al., 2020; Tan et al.,
2022; Zheng et al., 2022; Zhu et al., 2023; Zhu et al., 2024].

Until now, numerous attempts have been made to handle in-
complete multimodal hashing retrieval scenarios. Depending
on whether to restore missing modalities, existing solutions
can be broadly categorized into non-recovery and recovery
methods [Wang et al., 2023]. Non-recovery methods pri-
marily aim to enhance the fusion model’s robustness against
missing modalities. For instance, Flexible Online Multi-
modal Hashing (FOMH) [Lu et al., 2019a] and Flexible
Graph Convolutional Multimodal Hashing (FGCMH) [Lu
et al., 2021] employ a self-weighted strategy to seamlessly
fuse heterogeneous multimodal data. Supervised Adaptive
Partial Multi-View Hashing (SAPMH) [Zheng et al., 2020]
employs multimodal matrix factorization to learn shared and
view-specific hash codes for complete and incomplete modal-
ities respectively. While these non-recovery methods exhibit
less sensitivity to modality missing compared to traditional
complete multimodal hashing methods, there still exists a
persistent fusion gap between complete-modality and partial-
modality data. Recovery methods focus on explicitly esti-
mating and reconstructing the missing modality data from
the available modalities. Graph Convolutional Incomplete
Multi-modal Hashing (GCIMH) [Shen et al., 2023] devel-
ops Graph Convolutional Autoencoder to complete partial-
modality data with effective exploitation of its semantic struc-
ture. Neighbor-aware Completion Hashing (NCH) [Tan et
al., 2023] designs a cross-modal generator implemented by
Multi-layer perceptron (MLP) to directly generate missing
modalities from available ones, and incorporates a neighbor-
aware completion learning module to guide the learning of
the recovery procedure.

Current recovery methods effectively bridge the semantic
gap between complete and partial modality data, but overlook
the domain gap between modalities. This results in recov-
ered features occupying a distinct representation space from
ground truth. NCH’s neighbor-aware completion learning
module generates domain-consistent representations for in-
complete training data by randomly selecting complete train-
ing samples as anchors and aggregating them based on the
similarity between the available modalities of the samples and
anchors. However, it faces two issues: 1) Random anchors
may miss categories, leading to recovered features deviating
from ground truth [Tan et al., 2023]. 2) It overlooks seman-
tic inconsistencies across modalities [Li et al., 2024] by di-
rectly transferring similarity relationships from the available
modality to the missing modality. In this paper, we propose
to aggregate within-modality prototypes for modality recov-
ery. On the one hand, our learned within-modality prototypes
ensure the recovered features align with authentic ones in the
same space and integrates valuable information across all cat-
egories. On the other hand, our proposed modality specific
Weight-Net mitigates the semantic inconsistency problem by
adaptively learning the coefficients for aggregation from the
available modality of data.

3 Methodology
3.1 Problem Formulation
Similar to previous multimodal hashing methods [Tan et al.,
2023; Shen et al., 2023], we primarily focus on two modal-
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Figure 2: Illustration of our proposed Prototype-based Modality Completion Hashing (PMCH) framework, which primarily consists of two
components: the Within-modality Prototype Learning Module (PLM) and the Weight-Net based Prototype Aggregating Module (PAM).
PLM learns category-specific prototypes for each modality. PAM performs modality recovery by adaptively aggregating missing modality
prototypes. Ultimately, the available and recovered features are fused for multimodal hashing retrieval.

ities: image and text. Suppose that our training dataset con-
tains incomplete image and text multimodal data, their em-
beddings extracted by VGGNet [Simonyan and Zisserman,
2014] and Bag-of-Words (BoW) are denoted respectively as
X = [Xp, Xu] ⊆ Rnx×dx and Y = [Y p, Y u] ⊆ Rny×dy ,
where np samples have complete modalities, i.e., Xp ⊆
Rnp×dx and Y p ⊆ Rnp×dy , nxu samples have only image
modality, i.e., Xu ⊆ Rnxu×dx and nyu samples have only
text modality, i.e., Y u ⊆ Rnyu×dy . dx and dy are dimen-
sions of image and text feature, and we have nx = np + nxu,
ny = np + nyu. Additionally, the multi-label annotation is
represented as L = [Lp, Lxu, Lyu] ⊆ {0, 1}N×C , where
N = np + nxu + nyu, C denotes the total number of cat-
egories. We utilize the Frobenius norm denoted as || · ||F
for various computations. The objective of our proposed
PMCH framework is to learn compact and fused H-bit hash
codes bi ∈ {−1, 1}1×H for both complete-modality and
incomplete-modality data, as shown in Fig. 2.

3.2 Within-modality Prototype Learning
This module learns within-modality prototypes by correlat-
ing multimodal data, involving feature projection, fusion, and
relation-driven prototype learning.

Multimodal feature projection and fusion. We first map
the extracted visual embedding X and textual embedding Y
to the feature representation that shares the same dimension
through visual encoders Hv: V = Hv(X; θHv ) and textual
encoders Ht: T = Ht(Y ; θHt), where V = [V p, V u] ⊆
Rnx×K denotes the visual feature, T = [T p, Tu] ⊆ Rny×K

represents the textual feature. K is the feature dimension.
Then we fuse the visual and textual feature of complete train-
ing data to generate the complete fusion hash code as follows:

Hp = Hf (V
p + T p; θHf

), (1)

where Hf is the common hash function for hash projection,
Hp ⊆ Rnp×H represents the fusion hash code of complete

training data, H is the length of hash code.

Relation-driven prototype learning. Firstly, we devise a set
of learnable prototypes tailored for each modality, denoted
as P v = {pvc}Cc=1 ⊆ RC×K for the visual modality and
P t = {ptc}Cc=1 ⊆ RC×K for the textual modality. Here,
pvc ∈ R1×K and ptc ∈ R1×K represent learnable vectors that
correspond to each category for their respective modalities,
C denotes the class number. The dimension of the prototypes
matches the dimension of their corresponding features, ensur-
ing compatibility and efficient interactions during the learn-
ing process. Subsequently, we integrate prototypes from dif-
ferent modalities but belonging to the same category to cre-
ate fusion prototypes. These fusion prototypes are then pro-
jected from their distinct representation space into a common
hash space in a manner analogous to the projection of fusion
features. Given learnable within-modality prototypes P v and
P t, the fusion hash prototypes are obtained as follows:

Ph = Hf (P
v + P t; θHf

), (2)

where Ph ⊆ Rnp×H represents the fusion hash prototype.
We further propose a relation-driven prototype loss to re-

fine the hash prototypes. This loss function serves to pull rel-
evant hash codes toward their corresponding prototypes while
pushing away irrelevant hash codes, which is calculated in the
following manner:

Lproto = −
∑np

i=1

∑C
c=1 I(L

p
i = 1)cos(Hp

i , P
h
c )∑np

i=1 I(L
p
i = 1)

+

∑np

i=1

∑C
c=1 I(L

p
i = 0)cos(Hp

i , P
h
c )∑np

i=1 I(L
p
i = 0)

,

(3)

where I(·) is an indicator function. The relation-driven pro-
totype loss facilitates the effective transfer of semantic infor-
mation from fusion hash features to fusion hash prototypes.
As these fusion prototypes are constructed through the inte-
gration of within-modality prototypes, category information
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is subsequently propagated to the within-modality prototypes
during the backpropagation process.

3.3 Weight-Net based Prototype Aggregating
This module focuses on aggregating within-modality proto-
types for modality recovery, encompassing TPAM for text
and IPAM for image prototype aggregation.

Text Prototype Aggregating Module (TPAM). This module
completes patrial samples containing only image modality by
aggregating text prototypes. The coefficients required for this
aggregation process are dynamically generated by the image
Weight-Net, leveraging the accessible image features. During
the training stage, this process can be expressed as follows:

{ωt
c}Cc=1 = Wv(V

u
i ; θwv ), (4)

where V u
i denotes the incomplete training data with only im-

age modality, ωt
c ∈ R1×C represents the generated coefficient

corresponding to each text prototype. Wv refers to the image
Weight-Net parameterized by θwv

. In our implementation,
we adopt a MLP model with two hidden layers as Wv .

Once we have obtained the coefficients, we then utilize
them to combine the text prototypes for feature recovery. The
feature of the text modality can be reconstructed as follows:

T̃u
i =

C∑
c=1

ωt
c · ptc, (5)

where ptc ∈ R1×K represents the learnable text prototypes,
T̃u
i denotes the recovered text feature.

Image Prototype Aggregating Module (IPAM). This mod-
ule is designed to handle the missing of image modality. Sim-
ilarly, the text Weight-Net Wt is initially employed to gener-
ate the coefficients ωv

c . These coefficients are then utilized
to aggregate the image prototypes, thereby reconstructing the
image feature, denoted as Ṽ u

i

Modality reconstruction loss. We further propose a modal-
ity reconstruction loss to facilitate the learning of the modal-
ity specific Weight-Net and within-modality prototypes using
the complete training data [V p, T p], formulated as follows:

Lrecons = ∥Ṽ p − V p∥2F + ∥T̃ p − T p∥2F , (6)

where V p and T p are the authentic visual and textual feature,
Ṽ p and T̃ p are the recovered visual and textual feature.

As the modality reconstruction loss aims to minimize
the distance between the true features and those recovered
through an adaptive aggregation of their respective proto-
types, it can also implicitly ensure that the within-modality
prototypes and their corresponding features reside in the same
representation space.

3.4 Multimodal Hashing Learning
After restoring the missing modality features, we then inte-
grate them with their associated available modality features
to generate the hash code as follows: Hyu = Hm(Ṽ u +

Tu; θHm) and Hxu = Hm(V u + T̃u; θHm). Then the hash
codes for the entire training set can be denoted as H =
[Hp, Hxu, Hyu] ⊆ RN×H , where Hp represents the hash
codes of paired training data computed using Eq 1. Subse-
quently, we employ the pairwise similarity loss to learn dis-
criminate hash codes as follows:

Lsim =
N∑
i=1

N∑
j=1

∥cos(Hi, Hj)− Sij∥2F , (7)

where Sij denotes the semantic similarity between the i-th
sample and j-th sample. Sij is constructed as follows:

Sij =
2

1 + e−LiLT
j

− 1. (8)

To minimize the quantization errors caused by sign(·) op-
erator, the discrete hash code sign(Hi) is used to guide the
learning process of the continuous hash code Hi as follows:

Lsign =
N∑
i=1

∥Hi − sign(Hi)∥2F . (9)

Finally, the overall objective function of our proposed
PMCH architecture can be formulated as follows:

L = Lsim + αLrecons + βLproto + γLsign, (10)

where α, β, and γ serve as hyper-parameters.

3.5 Out-of-Sample Extension
Our proposed PMCH architecture shown in Fig 2 can effec-
tively handle both queries with complete modalities and those
with missing modalities. Specifically, given a query contain-
ing both visual modality vq and textual modality tq , its cor-
responding hash code can be generated by the trained multi-
modal hashing network Hf as follows:

bq = sign(Hf (v
q + tq; θHf

)). (11)

When confronted with a query containing only the vi-
sual modality, i.e., (vq, ∗) or solely the textual modality, i.e.,
(∗, tq), PMCH employs modality specific Weight-Net to gen-
erate the coefficients for prototype aggregation from the avail-
able modality :

{ωm
c }Cc=1 = Wa(a

q; θwa
), (12)

where m represents the missing modality, a represents the
available modality.

Subsequently, the missing modality is reconstructed by ag-
gregating its corresponding prototypes with the generated co-
efficients, as outlined below:

m̃q =
C∑

c=1

ωm
c · pmc . (13)

Finally, we integrate the recovered missing modality fea-
ture with the available modality feature to produce the final
hash code, as detailed below:

bq = sign(Hf (a
q + m̃q; θHf

)). (14)
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Task Method MIR Flickr NUS-WIDE MS COCO

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Tonly

DCMVH(TIP’20) 0.6516 0.6702 0.6893 0.7001 0.5309 0.5586 0.5770 0.5923 0.5038 0.5223 0.5279 0.5341
OASIS(AAAI’22) 0.7070 0.7316 0.7434 0.7522 0.5681 0.5852 0.6097 0.6253 0.5299 0.5457 0.5501 0.5527
BSTH(SIGIR’22) 0.7125 0.7477 0.7516 0.7578 0.5798 0.5935 0.6241 0.6372 0.5343 0.5472 0.5544 0.5595

SFISMH(TMM’24) 0.7290 0.7337 0.7401 0.7519 0.6159 0.6406 0.6486 0.6558 0.5326 0.5552 0.5590 0.5668
STBMH(TKDE’24) 0.7334 0.7443 0.7490 0.7537 0.5948 0.6285 0.6419 0.6511 0.5474 0.5705 0.5878 0.6035

FOMH(MM’19) 0.6209 0.6343 0.6432 0.6692 0.5652 0.5952 0.6101 0.6186 0.5111 0.5247 0.5261 0.5335
FGCMH(MM’21) 0.6715 0.6921 0.7084 0.7189 0.5865 0.6152 0.6451 0.6497 0.5674 0.5776 0.6096 0.6329

SAPMH(TMM’21) 0.7249 0.7353 0.7462 0.7554 0.6251 0.6524 0.6777 0.6907 0.5692 0.5862 0.6167 0.6419
GCIMH(MM’23) 0.7553 0.7725 0.7781 0.7828 0.6535 0.6721 0.6940 0.7056 0.5782 0.5989 0.6266 0.6516
NCH(TMM’23) 0.7590 0.7743 0.7800 0.7847 0.6819 0.6995 0.7176 0.7310 0.5907 0.6116 0.6370 0.6639
PMCH(ours) 0.7854 0.7985 0.8040 0.8061 0.7019 0.7181 0.7303 0.7378 0.6054 0.6454 0.6700 0.6844

Ionly

DCMVH(TIP’20) 0.7671 0.7744 0.7902 0.8010 0.6647 0.6683 0.6751 0.6889 0.4556 0.4611 0.4652 0.4715
OASIS(AAAI’22) 0.8017 0.8093 0.8136 0.8272 0.6817 0.6886 0.6935 0.7019 0.4873 0.5032 0.5094 0.5130
BSTH(SIGIR’22) 0.8055 0.8116 0.8269 0.8313 0.6985 0.7096 0.7179 0.7215 0.4993 0.5107 0.5115 0.5180

SFISMH(TMM’24) 0.8056 0.8128 0.8255 0.8327 0.7007 0.7205 0.7381 0.7447 0.5112 0.5118 0.5145 0.5149
STBMH(TKDE’24) 0.8027 0.8125 0.8293 0.8317 0.6852 0.7168 0.7310 0.7417 0.4970 0.5081 0.5168 0.5292

FOMH(MM’19) 0.7502 0.7600 0.7870 0.7930 0.6348 0.6649 0.6869 0.6893 0.4448 0.4494 0.4533 0.4536
FGCMH(MM’21) 0.7568 0.7724 0.7956 0.8101 0.6387 0.6708 0.6774 0.6875 0.4977 0.5075 0.5214 0.5372

SAPMH(TMM’21) 0.7796 0.7931 0.8049 0.8127 0.6727 0.6944 0.7056 0.7269 0.5076 0.5175 0.5281 0.5361
GCIMH(MM’23) 0.7920 0.8105 0.8285 0.8315 0.6993 0.7202 0.7368 0.7430 0.5213 0.5408 0.5427 0.5439
NCH(TMM’23) 0.8072 0.8231 0.8316 0.8353 0.7149 0.7307 0.7470 0.7601 0.5210 0.5354 0.5433 0.5510
PMCH(ours) 0.8390 0.8516 0.8545 0.8582 0.7398 0.7584 0.7695 0.7707 0.5302 0.5419 0.5490 0.5554

Table 1: mAP results under two missing conditions on query set.

4 Experiments
4.1 Experimental Settings
Datasets. In this study, we conduct experiments on three
widely used benchmark datasets, i.e., MIR Flickr, NUS-
WIDE, and MSCOCO. The multimodal data includes image
and text modalities. The images are extracted using VG-
GNet, while the text modality is represented using bag-of-
words vectors [Shen et al., 2023; Tan et al., 2023]. MIR
Flickr [Huiskes et al., 2010] comprises 20,015 image-text
pairs annotated with one or more of 24 categories, which are
crawled from the Flickr website. NUS-WIDE [Chua et al.,
2009] comprises 195,834 web images-text pairs associated
with the 21 most prevalent concept labels. MS COCO [Lin
et al., 2014] comprises 82,783 training samples and 40,504
validation samples, each associated with at least one of the
80 categories. We follow Tan [Tan et al., 2023] to split the
three datasets into the training, validation, and test sets.

Implementation. In our proposed PMCH, the modality-
specific Weight-Net comprises two fully-connected (FC) lay-
ers, with the latent feature dimension set to 2048. Addition-
ally, the visual and textual encoders are implemented using
FC layers, with latent dimensions of 2,048 and 1,024 respec-
tively. The outputs of these encoders have a dimension of
512. Furthermore, the hash fusion model incorporates a lin-
ear projection layer that takes in an input dimension of 512
and outputs a hash code length as specified. During the train-
ing stage, we set the batch size to 512 and run the iterations
for 50 epochs. For optimization, we employ the Adam opti-
mizer [Kingma and Ba, 2014]. Empirically, we set the learn-
ing rate to 0.05 for prototype learning and 0.001 for the re-
maining components.

Baselines. We compare our proposed method against
ten state-of-the-art (SOTA) multimodal hashing tech-

niques, including five complete multimodal hashing meth-
ods which limited to handling complete multimodal data,
i.e., DCMVH [Zhu et al., 2020], OASIS [Wu et al., 2022b],
BSTH [Tan et al., 2022], SFISMH [Zhu et al., 2024],
STBMH [Tu et al., 2024] and five incomplete approaches
which are capable of processing not only complete but also
incomplete multimodal data, i.e., FOMH [Lu et al., 2019a],
FGCMH [Lu et al., 2021], SAPMH [Zheng et al., 2020],
NCH [Tan et al., 2023], and GCIMH [Shen et al., 2023].
For the complete multimodal hashing methods, we directly
model the incomplete multimodal data for training and query
without recovery. We carefully reproduce these methods us-
ing their publicly available codes and adhere to the parameter
settings specified in the original papers.

Evaluation Metric. Consistent with established multimodal
hashing retrieval methods [Tan et al., 2022; Shen et al., 2023],
we consider the widely-used metrics, i.e., mean Average Pre-
cision (mAP) to quantitatively assess the retrieval perfor-
mance of our proposed approach. The mAP is calculated us-
ing all the samples in the database.

4.2 Comparison with State-of-the-Art Methods
We compare the proposed PMCH with state-of-the-arts on
both incomplete and complete multimodal retrieval tasks.

Incomplete Query Set. This section evaluates the perfor-
mance of PMCH when query data is incomplete. Follow-
ing [Shen et al., 2023], we consider two missing-modality
conditions: missing visual modality and missing textual
modality. According to Table 1, we can obtain the follow-
ing observations: 1) Generally, recovery methods show better
performance than non-recovery methods. This demonstrates
that reconstructing the missing modality data could bridge the
semantic gap with complete modality data, thereby obtaining
higher performance. 2) Our PMCH outperforms all baselines
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Figure 3: mAP results with different PDR on training set.

Method 16bits 32bits 64bits 128bits
BSTH(SIGIR’22) 0.8208 0.8334 0.8467 0.8526
GCIMH(MM’23) 0.8201 0.8426 0.8455 0.8517

SFISMH(TMM’24) 0.8228 0.8389 0.8488 0.8548
STBMH(TKDE’24) 0.8256 0.8401 0.8486 0.8580

Ours 0.8404 0.8528 0.8552 0.8590

Table 2: mAP results on complete multimodal retrieval.

Task Method 16bits 32bits 64bits 128bits

Tonly

w/o Completion 0.7180 0.7359 0.7404 0.7505
+GCAE w/o PMCH 0.7443 0.7585 0.7640 0.7682
+MLP w/o PMCH 0.7440 0.7598 0.7685 0.7718

Ours 0.7606 0.7725 0.7782 0.7815

Ionly

w/o Completion 0.7833 0.8032 0.8163 0.8239
+GCAE w/o PMCH 0.8061 0.8159 0.8271 0.8294
+MLP w/o PMCH 0.8017 0.8171 0.8278 0.8285

Ours 0.8264 0.8391 0.8452 0.8459

Table 3: Ablation study on modality completion method.

in both missing cases. This proves that PMCH could recover
more authentic features for incomplete query data, as it alle-
viates the domain gap issue by adaptively aggregating within-
modality prototypes.

Incomplete Training Set. This section section evaluates
the performance of PMCH when training data is incomplete.
Following [Tan et al., 2023], we construct incomplete train-
ing data using five Partial Data Ratios (PDR). For example,
”90%” indicates 90% of the data misses a modality, with vi-
sual and textual modalities each having a PDR of 45%. The
mAP results of all baselines with respect to 32 bits are shown
in Fig. 3. From Fig. 3, we can observe that PMCH obvi-
ously outperforms the baselines across all PDRs. In addi-
tion, as PDR increases, PMCH achieves relatively stable per-
formance. These empirical results imply that the proposed
PMCH can effectively handle the training of incomplete mul-
timodal hashing by minimizing the semantic discrepancy be-
tween the reconstructed and original data.

Complete Multimodal Retrieval. This section evaluates the
performance of PMCH on complete multimodal retrieval. We
present comparison results on MIR Flickr with the top four
baselines in Table 2. According to Table 2, although PMCH

Task Method 16bits 32bits 64bits 128bits

Tonly
+anchors w/o PLM 0.7173 0.7328 0.7450 0.7475

Ours 0.7606 0.7725 0.7782 0.7815

Ionly
+anchors w/o PLM 0.7776 0.7988 0.8131 0.8202

Ours 0.8264 0.8391 0.8452 0.8459

Table 4: Ablation study on Prototype Learning Module.

Task Method 16bits 32bits 64bits 128bits

Tonly

+KNN w/o PAM 0.7290 0.7524 0.7605 0.7648
+GAT w/o PAM 0.7156 0.7309 0.7406 0.7458
+TEs w/o PAM 0.7449 0.7621 0.7678 0.7716

Ours 0.7606 0.7725 0.7782 0.7815

Ionly

+KNN w/o PAM 0.8035 0.8223 0.8289 0.8319
+GAT w/o PAM 0.8006 0.8192 0.8215 0.8241
+TEs w/o PAM 0.8113 0.8285 0.8337 0.8373

Ours 0.8264 0.8391 0.8452 0.8459

Table 5: Ablation study on Prototype Aggregating Module.

is not specifically designed for complete multimodal retrieval,
it still shows competitive performance in this setting. The
reason lies in the joint learning of hash codes and their corre-
sponding prototypes in PLM module, which not only learns
within-modality prototypes, but also effectively draws rele-
vant data closer, thereby improving complete multimodal re-
trieval performance.

4.3 Ablation Study
In this section, we perform ablation studies by substituting
the modality completion strategies and key components with
their respective variants. The experiment is conducted on Mir
Flickr with 50% PDR applied to the training set, and either
image or text modality is missing in the query set.

Variants on Modality Completion Method. In this sec-
tion, we design three variants to prove the superiority of
the proposed modality completion paradigm, including: 1)
w/o completion. In this variant, we remove our com-
pletion learning and directly model incomplete multimodal
data. 2) +GCAE w/o PMCH In this variant, following
GCIMH [Shen et al., 2023], we use Graph Convolutional
Autoencoder (GCAE) to complete the partial modality data.
3) +MLP w/o PMCH In this variant, following NCH [Tan et
al., 2023], we introduce a Multi-layer perceptron (MLP) to
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Figure 4: Visualization of the recovered feature and ground truth for
NCH, GCIMH and our PMCH under missing patterns with only one
modality available.

generate the missing modality from the available one. From
the retrieval performance shown in Table 3, two observations
can be obtained: 1) Removing total completion learning will
result in incomplete multimodal semantics and thus reduce
retrieval performance. 2) Compared with the generation-
based modality recovery method, our proposed prototype-
based completion method performs the best. The main reason
is that compared with the cross-modal generation, PMCH can
avoid the separated representation space with true features
when recovering missing modalities.

Effectiveness of Prototype Learning Module (PLM). In
our PMCH, we design PLM to learn category-specific pro-
totypes for each modality. In order to evaluate its effective-
ness, following the setting of [Tan et al., 2023], we replace
the learnable within-modality prototypes with complete an-
chors randomly selected from the training set. The number of
anchors is set to 300. According to the results shown in Ta-
ble 4, our PMCH performs better. The reason is that random
anchors may miss categories. If all the anchors are dissimilar
to the arrived incomplete samples, the recovered features will
be distinct from the ground truth. While our within-modality
prototypes learned by PLM integrate information across all
categories, enabling the generation of appropriate features for
partial samples belonging to any category.

Effectiveness of Prototype Aggregating Module (PAM).
PAM employs the modality specific Weight-Net to dynam-
ically learn the coefficients for aggregating missing modal-
ity prototypes. In order to evaluate its effectiveness, we re-
place it with three similarity-based aggregation methods men-
tioned in [Tan et al., 2023], which respectively employ K-
Nearest Neighbors (KNN), Graph Attention Network (GAT)
and Transformer Encoders (TEs) to compute similarities be-
tween the available modality of samples and the available
modality prototypes. These similarities are then utilized to
aggregate missing modality prototypes. As shown in Table 5,
we can find that our PAM shows better performance than the
other similarity-based prototype aggregating variants, which
implies that the modality specific Weight-Net could dynam-
ically learn the coefficients from the available modality of

Figure 5: Parameter sensitivity analysis.

samples, enabling adaptive aggregation of missing modality
prototypes, thus recovering more authentic features.

4.4 Further Analysis

Visualization. We visualize the recovered features and
ground truth to qualitatively compare the generation-based
recovery method NCH, GCIMH, and our proposed PMCH.
To achieve this, we randomly select one label from each of
the datasets, with a code length set to 16. We then project
the features of the selected samples into a 2D space using t-
SNE [Van der Maaten and Hinton, 2008]. Additionally, we
visualize the learned within-modality prototypes for the cho-
sen label. The results on MIR Flickr are presented in Fig. 4.
By analyzing the t-SNE results, we make two key observa-
tions: 1) The prototypes learned by PMCH reside in the same
representation space as their associated modality features. 2)
The representation space of features recovered by PMCH is
significantly closer to the ground truth compared to NCH and
GCIMH. These results underscore the effectiveness of our
proposed PMCH method in avoiding the domain gap during
the feature recovery process.

Parameter Sensitivity Analysis. We investigate the impact
of three crucial hyper-parameters in our proposed PMCH
method: α, β, and γ, using a hash code length of 32-bits
on the MIR Flickr dataset. Fig. 5 depicts the performance
variation curves on image modality, text modality and both
modalities, respectively. Overall, our method demonstrates
robustness as the mAP performance remains relatively stable
within a certain range of hyper-parameter variations.

5 Conclusion

In this paper, we introduce a prototype-based modality com-
pletion method called PMCH for incomplete multimodal
hashing learning. Specifically, we devise an Within-modality
Prototype Learning Module that learns prototypes for each
modality. Subsequently, we delicately design a modality spe-
cific Weight-Net to dynamically generate coefficients from
available modality, enabling adaptive aggregation of missing
modality prototypes. PCMH ensures recovered features align
with authentic ones in the same space and adaptively inte-
grates valuable information across all categories for precise
recovery. Extensive experiments on three widely used mul-
timodal retrieval datasets underscore the superiority of our
proposed method from various aspects in both complete and
incomplete multimodal retrieval scenarios.
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