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Abstract
Weighted model integration (WMI) is a relatively
recent formalism that has received significant in-
terest as a technique for solving probabilistic infer-
ence tasks with complicated weight functions. Ex-
isting methods and tools are mostly focused on lin-
ear and polynomial functions and provide limited
support for WMI of rational or radical functions,
which naturally arise in several applications. In
this work, we present a novel method for approx-
imate WMI, which provides more effective support
for the wide class of semi-algebraic functions that
includes rational and radical functions, with liter-
als defined over non-linear real arithmetic. Our
algorithm leverages Farkas’ lemma and Handel-
man’s theorem from real algebraic geometry to re-
duce WMI to solving a number of linear program-
ming (LP) instances. The algorithm provides for-
mal guarantees on the error bound of the obtained
approximation and can reduce it to any user-defined
value ϵ. Furthermore, our approach is perfectly par-
allelizable. Finally, we present extensive experi-
mental results, demonstrating the superior perfor-
mance of our method on a range of WMI tasks
for rational and radical functions when compared
to state-of-the-art tools for WMI, in terms of both
applicability and tightness.

1 Introduction
Probabilistic inference tasks are of central importance in
many applications. In the discrete setting, weighted model
counting (WMC) [Chavira and Darwiche, 2008] is a popular
and effective paradigm for solving such problems in a wide
variety of models. In WMC, the probabilistic inference task
is reduced to computing the weighted sum of satisfying as-
signments of Boolean formula. Recent tools have taken ad-
vantage of the vast advances made in SAT-solvers to solve
WMC effectively [Chakraborty et al., 2016]. However, many
probabilistic inference tasks are defined over richer domains,

e.g, continuous settings, where the summation needs to be re-
placed by integration, and satisfiability needs to be checked
for formulas involving, e.g, linear and non-linear constraints
over reals. This has led to the definition of the problem of
weighted model integration (WMI) [Belle et al., 2015], which
applies in the continuous and even hybrid settings. In WMI,
the weighted sum over models is replaced by an integral (or
a Boolean combination of integrals) of weight functions de-
fined over the satisfying assignments for SMT (satisfiability
modulo theory)-formulas over infinite domains. This often
necessitates the use of SMT-solvers over various theories,
which are richer but less scalable than SAT-solvers.

In the last 10 years, a rich line of research has emerged
around WMI (e.g, [Morettin et al., 2017; Dos Martires
et al., 2019; Morettin et al., 2021; Abboud et al., 2022;
Spallitta et al., 2024]) with multiple techniques developed for
increasingly more powerful weight functions ranging from
linear functions to even polynomial functions, and integrat-
ing over increasingly more complex sets, from intervals to
polytopes and even conjunctions of polynomials. WMI meth-
ods have also been investigated for applications involving
probabilistic inference in probabilistic programs [Sankara-
narayanan et al., 2013; Albarghouthi et al., 2017; Gehr et
al., 2016; Beutner et al., 2022], where integration over do-
mains like polytopes and semi-algebraic sets is often needed.
The existing approaches can be broadly divided into two
groups: exact and approximate. Exact approaches are ei-
ther SMT-solver based [Morettin et al., 2017] or knowledge-
compilation based [Dos Martires et al., 2019]. In both cases,
given #P-hardness of even the exact WMC problem, these
approaches are often restrict to theories such as LRA (lin-
ear real arithmetic). Approximate approaches are often fur-
ther divided into statistical and numerically approximate,
where the former refers to Monte-Carlo methods which are
highly scalable and expressive, but provide statistical guar-
antees or even no guarnatees at all [Spallitta et al., 2024;
Dos Martires et al., 2019]. The latter are approximate but
with formal guarantees on the error bound, and hence pro-
vide a tradeoff between the exact and statistical approaches.
We adopt this style of guarantees in this paper.
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Our contributions. In this work, our goal is to develop a nu-
merically approximate (henceforth referred to as just approx-
imate) approach for WMI which allows rich weight functions
beyond linear and polynomial functions, as well as integra-
tion over domains that are more complex than previously con-
sidered. Our main contribution is a new approximate method
for the WMI problem that can handle integration over general
semi-algebraic sets, i.e., Boolean combinations of polynomi-
als, and general semi-algebraic weight functions.

Two important classes of semi-algebraic weight functions
that are of particular interest in this work are rational func-
tions and radical functions, whose integration commonly
arises in physics, motion modelling and finance. For in-
stance, the computation of inverse Fourier transforms often
involves integration over rational functions, whereas in elec-
trostatics and quantum physics Legendre polynomials are uti-
lized to approximate spherical harmonics [Riley et al., 2006].
In motion modelling, Lévy-flights provide a good probabilis-
tic model for how humans and animals (e.g. sharks) perform
blind rapid search for some target region, e.g. food or shel-
ter [Sims et al., 2008; Humphries et al., 2010]. In mathemat-
ical finance, pricing of certain assets are often modelled us-
ing Lévy-flights with heavy-tailed Cauchy distribution guid-
ing the jums in prices (see also Example 3) [Tankov, 2003;
Bouchaud and Potters, 2003]. Many computational inference
problems in these examples reduce to integrating rational or
radical functions.

Our new method reduces the approximate WMI problem
to the problem of computing an approximation of the vol-
ume of a semi-algebraic set. Several works in mathematics
literature have considered the problem of computing approx-
imate volumes of basic semi-algebraic sets, e.g., [Lairez et
al., 2019] uses Picard-Fuchs equation and then numerically
solve it for computing the volume of basic semi-algebraic
sets, while [Henrion et al., 2009] uses semi-definite program-
ming relaxations, but these are harder to implement. Our
approach instead leverages results from optimization such as
Farkas’ lemma and real-algebraic geometry such as Handel-
man’s theorem to reduce the approximate WMI problem to
solving a number of linear programming (LP) instances. This
gives us a computationally tractable approach. Moreover, for
any desired error bound ϵ > 0, we prove that our method
is guaranteed to return an ϵ-tight approximation of the WMI
value, by tuning method parameters at the cost of increasing
the number of needed LP-calls. Thus, our contributions are
as follows:

1. We develop a novel algorithm for the approximate WMI
problem. Our algorithm supports integration of gen-
eral semi-algebraic weight functions over general semi-
algebraic sets. This makes our method effectively appli-
cable to a large new class of weight functions, such as
rational functions and radical functions.

2. Our method provides formal guarantees on the tightness
of the approximation error. In particular, for any error
bound ϵ > 0 provided by the user, our method produces
an ϵ-tight approximation of the WMI value.

3. We implement our algorithm and integrated our tool
(WMI-LP) with the state-of-the-art WMI framework

of [Spallitta et al., 2024]. Our extensive experiments
demonstrate that our approach outperforms state-of-the-
art exact and approximate tools in handling a wider vari-
ety of polynomial, rational, and radical functions. It also
provides consistently tighter error bounds, highlighting
its robustness and accuracy across benchmarks.

Related Works. We already mentioned several related works
on WMI. [Morettin et al., 2017] is an exact method for WMI
which uses predicate abstraction, but is restricted to LRA and
Boolean formulas. In particular, it uses MathSAT [Cimatti
et al., 2013] for SMT reasoning and LattE Integrale [De Lo-
era et al., 2004] for finding integrals and can handle poly-
nomial weight functions over LRA formulas. On the other
hand, [Dos Martires et al., 2019] uses knowledge compila-
tion for WMI for NRA and Boolean formulas and can handle
probability functions as weight functions over NRA formulas.
It provides support for both exact and approximate WMI. The
exact WMI method Symbo depends on the PSI solver [Gehr
et al., 2016], which has proof rules for computing exact in-
tegrals. Their approximate method Sampo depends upon
Monte Carlo sampling, therefore does not provide guaran-
tees. WMI has also been explored for applications involving
probabilistic inference in probabilistic programs [Sankara-
narayanan et al., 2013; Albarghouthi et al., 2017; Gehr et
al., 2016; Beutner et al., 2022]. Finally, [Spallitta et al.,
2024] is the most recent and relevant work, that we build
upon, which provides an option of using exact or sampling-
based integrators for WMI. In particular, we have integrated
our WMI-LP tool with their tool and provide an option to
use our method to compute the integration in their algorithm.
Its exact method cannot handle weight functions which are
rational functions or radicals, whereas the sampling-based
method can handle rational functions but does not provide
any guarantees on approximation tightness. Moreover, the
approximate method cannot handle radical functions. Be-
yond the earlier mentioned works, volume approximation has
been considered in applications in computer graphics (e.g.,
[Rom and Brakhage, 2011]). The idea of gridding, which
we also use is common and has been found in several previ-
ous works (e.g., [Dehnert et al., 2015; Akshay et al., 2024b;
Akshay et al., 2024a]). The use of Handleman’s theorem and
Farkas’ lemma has been done for quantifier elimination, in-
variant generation etc, but not for volume computation and
not over general semi-algebraic sets [Chatterjee et al., 2025;
Colón et al., 2003].

2 Preliminaries
In this section, we introduce the necessary preliminaries on
semi-algebraic sets and functions, and formally define the
problem that we consider in this work.

Semi-algebraic Sets. A set S ⊆ Rn is said to be semi-
algebraic, if it is the satisfiability set of a logical predicate de-
fined in terms of a boolean combination of finitely many poly-
nomial inequalities over Rn. Formally, S is semi-algebraic if
it can be expressed as

S =
{
x ∈ Rn | φ(x)

}
,
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where ϕ is some logical predicate over n real-valued variables
that can be generated by the grammar

φ := ℓ | φ ∧ φ | ¬φ
ℓ := f ▷◁ 0, where ▷◁ ∈ {>,≥}, f ∈ R[V], (1)

with V = {x1, x2, . . . , xn} a set of n real-valued variables and
R[V] denoting the set of all polynomial functions over V.
Semi-algebraic Functions. A function f : Rn → R is said
to be semi-algebraic, if its graph Γ( f ) := {(x, y) ∈ Rn+1 | x ∈
Rn, y = f (x)} is a semi-algebraic set in Rn+1.

Example 1 (Rational and radical functions). Two classes of
semi-algebraic functions that will be of particular interest in
this work are rational and radical functions. Rational func-
tions are defined as fractions of polynomials, i.e. f (x) = p(x)

q(x) ,
where p(x) and q(x) , 0 are polynomials in R[V].

Radical functions extend this definition and are expressed
in the form r(x) = n

√
f (x), where f (x) is a rational function as

defined above, and n ∈ N is a positive integer.
Graphs of both rational and radical functions are semi-

algebraic, and hence, these functions are semi-algebraic.

Weighted Model Integration. Weighted Model Integration
(WMI) generalizes Weighted Model Counting (WMC) to hy-
brid domains involving both Boolean and real variables by
integrating a weight function w(x) over a semi-algebraic set
S defined by logical formulas. In WMC, the goal is to com-
pute the weighted sum of satisfying assignments for a propo-
sitional formula, where each Boolean literal is assigned a
non-negative weight. WMI extends this by integrating over
real-valued variables in addition to summing over Boolean
assignments. Classically, WMI assumes a factorization of the
weight function w, enabling the integral to be computed as a
sum over disjoint Boolean assignments. Formally, the WMI
of a formula ϕ can be expressed as

WMI(ϕ,w) =
∑

b∈B(ϕ)

∏
ℓ∈b

w(ℓ)
∫

S (b)
w(x) dx,

where B(ϕ) denotes the set of truth assignments to the
Boolean atoms of ϕ, S (b) is the semi-algebraic region defined
by the real-valued constraints under b, and ℓ iterates over the
literals in b. Since existing WMI and WMC tools efficiently
handle the Boolean part of ϕ, we focus exclusively on the
integral component of the problem. In this work, we extend
WMI to support a broader class of weight functions than prior
methods, enabling more expressive and flexible modeling for
hybrid domains.

More precisely, our goal in weighted model integration
(WMI) is to compute or approximate the value of the inte-
gral of a weight function over some given set. Given a weight
function w : Rn → R≥0 and a set S ⊆ Rn, we write

WMI(S ,w) =
∫

S
w(x) dx

to denote the Lebesgue integral of the function w over the
set S . For the integral to be mathematically well defined, we
assume that both w and S are Borel-measurable and that w is
a non-negative function.

Problem Statement. We now formally define our problem,
which is concerned with approximate WMI of semi-algebraic
weight functions over semi-algebraic sets.

Let V = {x1, x2, . . . , xn} be a set of n real-valued variables.
Suppose that we are given a semi-algebraic set S = {x ∈
Rn | φ(x)} where the predicate ϕ is defined according to the
grammar in eq. (1), and a non-negative semi-algebraic weight
function w : Rn → R≥0. In addition, suppose that we are
given an error bound ϵ > 0.

The goal of our WMI problem is to compute an ϵ-tight
approximation of the value of the integral WMI(S ,w), i.e. we
want to compute a value M ∈ R such that

WMI(S ,w) − ϵ ≤ M ≤WMI(S ,w) + ϵ.

Assumption: Boundedness. In addition to assuming that w
and S are semi-algebraic, our WMI algorithm will also as-
sume that the set S ⊆ Rn is bounded. In particular, for each
variable xi ∈ V, we assume that we are given an interval
bound [ai, bi] on the values that xi can attain over S . Hence,
we have S ⊆

∏n
i=1[ai, bi].

Assumption: Formula of Weight Function. We assume the
predicates for the weight function’s graph Γ(w) and for the
semi-algebraic set {(x, y) ∈ Rn+1 | w(x) > y} are provided
in the form that conforms to the grammar in eq. (1) as the
description of the weight function in the input to our algo-
rithm. This is needed in order to allow for automated reason-
ing about the weight function w.
Example 2. To illustrate our problem, we present examples
of two special cases of weight functions that give rise to clas-
sical and well known computational problems. If w(x) = 1
for all x ∈ Rn, then our WMI problem becomes the problem
of approximating the volume of a bounded set S .

If w(x) is a probability density function of some probability
distribution, then our WMI problem becomes the probabilistic
inference problem of approximating the probability P[X ∈ S ],
where X is a random variable over Rn whose probability den-
sity function is w(x).

In both cases, we are interested in computing ϵ-tight ap-
proximations, where ϵ > 0 is a precision parameter that can
be provided by the user.
Example 3 (Lévy Flight in Financial Modeling). In finance,
asset prices often experience rare but significant jumps, mod-
eled as Lévy flights. These dynamics can be represented as:

Pt+1 = Pt + ∆Pt, ∆Pt ∼ Cauchy(µ, γ),
where the heavy-tailed Cauchy distribution captures extreme
price movements. An event of interest, such as the price ex-
ceeding a threshold K, is expressed as a predicate ψ(PT ).

Computing the probability P[ψ(PT )] reduces to a weighted
model integration problem over a rational weight function on
a semi-algebraic domain, since the probability density func-
tion of the Cauchy(µ, γ) probability distribution is a rational
function. See the extended version [Akshay et al., 2025a] for
more details.

3 Algorithm
We now present our algorithm for solving the WMI problem
for semi-algebraic functions and sets, that was defined in the
previous section. Our algorithm proceeds in three steps:
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1. Step 1. Reduction to Volume Computation. We reduce
the problem of computing an ϵ-tight approximation of
WMI(S ,w) to the problem of computing an ϵ-tight ap-
proximation of WMI(S ′, 1), where S ′ ⊆ Rn+1 is a suit-
ably defined semi-algebraic set that depends on S and w
and which satisfies WMI(S ′, 1) =WMI(S ,w).

2. Step 2. Computation of Bounds on S ′. The new semi-
algebraic set S ′ is defined over n+ 1 variables x1, . . . , xn
and a fresh variable y introduced in the construction of
S ′ (see details below). In this step, we compute an inter-
val bound on the values that y can attain over S ′.

3. Step 3. Volume Approximation:. Finally, we com-
pute an ϵ-tight approximation of volume WMI(S ′, 1) =
WMI(S ,w), by using Algorithm 1.

Step 1. Reduction to Volume Computation. We define the
semi-algebraic set S ′ for which WMI(S ′, 1) = WMI(S ,w) as
follows. Let y be a fresh variable distinct from all variables in
V = {x1, . . . , xn}. We define a predicate ψ over the variables
{x1, . . . , xn, y} via

ψ = y ≥ 0 ∧ w(x1, x2, · · · , xn) ≥ y ∧ φ, (2)

where recall φ is a predicate over {x1, . . . , xn} for which
S = {x ∈ Rn | φ(x)}. Notice that ψ conforms to the gram-
mar in eq. (1), since ϕ conforms to the grammar in eq. (1) and
we also assumed that the predicate w(x) ≤ y = ¬(w(x) > y)
is provided as an algorithm input in the form conforming
to the grammar in eq. (1). Hence, the set S ′ = {(x, y) ∈
Rn+1 | ψ(x, y)} is semi-algebraic. By using the properties of
Lebesgue integration, it follows that

WMI(S ′, 1) =WMI(S ,w),

as desired. For a formal proof of this claim, we refer the
reader to the extended version [Akshay et al., 2025a].
Step 2. Computation of Bounds on S ′. Next, we derive an
interval bound [a, b] on the values that y can attain over S ′.
Thus, we have S ′ ⊆

∏n
i=1[ai, bi] × [a, b] ⊆ Rn+1. This will be

needed later in Algorithm 1 which will compute the ϵ-tight
approximation of WMI(S ′, 1).

Since the predicate ψ in eq. (2) contains the clause y ≥ 0,
we can set a lower bound to a = 0. On the other hand, we
observe from eq. (2) that b is a correct upper bound if and
only if w(x1, . . . , xn) ≤ b for all (x1, . . . , xn) ∈ S . Since we
know that S ⊆

∏n
i=1[ai, bi] by our problem assumptions, it

follows that any value of b for which the constraint∧
i

(xi ≥ ai ∧ xi ≤ bi) =⇒ w(x1, · · · , xn) ≤ b

is satisfied yields a correct upper bound on the value that y
can attain over S ′. Such value of b can be computed by per-
forming binary search. For each fixed value of b, the check of
whether the above system of constraints is satisfied is reduced
to solving a number of linear programming (LP) instances, by
using Farkas’ Lemma and Handelman’s theorem. We present
the details of this procedure in the extended version [Ak-
shay et al., 2025a] and also provide the statements of Farkas’
Lemma [Farkas, 1902] and Handelman’s Theorem [Handel-
man, 1988] in the extended version [Akshay et al., 2025a].

In the special case of w being a rational or a radical function,
this procedure can be further optimized by directly reducing
the problem to solving LP instances and without the need to
perform binary search, see the extended version [Akshay et
al., 2025a] for details.
Step 3. Volume Approximation. Finally, we present our algo-
rithm for computing an ϵ-tight approximation of the volume
WMI(S ′, 1) of the semi-algebraic set S ′ defined in Step 2.

The main idea behind our algorithm is to cover the semi-
algebraic set S ′ with a finite number of hyper-rectangles. The
volume of S ′ is then approximated by summing the volumes
of all the hyper-rectangles contained in S ′.
Algorithm Overview. Consider the semi-algebraic set S ′ de-
fined by the predicate ψ in Step 2. We begin with the hyper-
rectangle [a1, b1] × [a2, b2] × . . . × [an, bn] × [a, b], which en-
closes the entire semi-algebraic set. We then recursively di-
vide this hyper-rectangle into smaller hyper-rectangles. Af-
ter each subdivision, for each hyper-rectangle we determine
whether it is contained entirely inside, outside, or intersects
the semi-algebraic set S ′. Hyper-rectangles completely out-
side of S ′ are discarded, while those completely inside are
added to the total volume. Hyper-rectangles that intersect S ′
are further subdivided. This process is continued until the
volume of the remaining hyper-rectangles (i.e. those that have
been neither discarded nor added to the volume) is less than ϵ.
That way, we ensure that the total added volume upon the al-
gorithm termination yields an ϵ-tight approximation of the
total volume of S ′. To determine whether a hyper-rectangle
is inside, outside, or intersects S ′, we again use Handelman’s
Theorem and Farkas’ Lemma to translate this problem into
solving a number of LP instances, which can be solved by us-
ing an off-the-shelf LP solver. Finally, the algorithm outputs
an ϵ-tight approximation of the volume of the set S ′. The
pseudocode of our algorithm is shown in Algorithm 1.
Hyper-rectangles. A hyper-rectangle H in Rn+1 is defined as
the solution set of a system of inequalities of the form

ψH =


l1 ≤ x1 ≤ u1
l2 ≤ x2 ≤ u2

...
ln+1 ≤ xn+1 ≤ un+1

(3)

where each l1, u1, . . . , ln+1, un+1 ∈ R with li ≤ ui for each i.
Given a hyper-rectangle H, we denote its volume as vol(H) =∏n+1

i=1 (ui−li) and its diameter as diameter(H) = maxn+1
i=1 {ui−li}.

Subdivision of Hyper-rectangles. The subdivision of hyper-
rectangle H along the i-th dimension is the pair of hyper-
rectangles {H1,H2}, where H1 is defined by the system of in-
equalities ψH1 = ψH ∧ (xi ≤

li+ui
2 ) and H2 is defined by the

system of inequalities ψH2 = ψH ∧ (xi ≥
li+ui

2 ).
Subset Decision Procedure. The SubsetDecision procedure
determines whether a hyper-rectangle H is contained entirely
inside, outside, or intersects the semi-algebraic set S ′. We
use Farkas’ Lemma and Handelman’s Theorem to translate
this problem into solving a number of LP instances. In what
follows, we present the details of this translation.

Consider the semi-algebraic set S ′ ⊆ Rn+1 defined by the
predicate ψ in eq. (2), and let H ⊆ Rn+1 be a hyper-rectangle
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Algorithm 1 Volume Approximation of Semi-algebraic Sets
1: procedure VolumeApproximation(V, S ′, ψ, ϵ, [ai, bi], [a, b], d)
2: H0 ← [a1, b1] × [a2, b2] × . . . × [an, bn] × [a, b]
3: VolumeSum← 0
4: HyperRCover← {H0}

5: Error← Volume(HyperRCover)
6: while HyperRCover , ∅ ∧ Error ≥ ϵ do
7: Choose H ∈ HyperRCover
8: HyperRCover← HyperRCover \ {H}
9: result ← SubsetDecision(H, S )

10: if result = Outside then
11: Discard H
12: Error← Error − Volume(H)
13: else if result = Inside then
14: VolumeSum← VolumeSum + Volume(H)
15: Error← Error − Volume(H)
16: else
17: H1,H2 ← Subdivide(H)
18: HyperRCover← HyperRCover ∪ {H1,H2}

19: end if
20: end while

return VolumeSum
21: end procedure

defined by the system of inequalities ψH as in eq. (3). Observe
that H is contained entirely inside S ′ if and only if

∀(x, y) ∈ Rn+1. (x, y) ∈ ψH =⇒ ψ(x, y), (4)

that H is contained entirely outside S ′ if and only if

∀(x, y) ∈ Rn+1. (x, y) ∈ ψH =⇒ ¬ψ(x, y), (5)

and that H intersects S ′ if and only if neither of the above
is satisfied. Hence, in order to determine whether H is con-
tained entirely inside, outside, or intersects S ′, it suffices to
determine if either of the above two formulas is valid. In what
follows, we show how SubsetDecision determines the validity
of eq. (4). The validity of eq. (5) is determined analogously.

To determine the validity of eq. (4), recall that S ′ is semi-
algebraic hence ψ can be expressed as a boolean combination
of polynomial inequalities over variables x1, . . . , xn, y, i.e.

ψ =

p∧
i=1

q∨
j=1

pi, j(x1, . . . , xn, y) ≥ 0,

where each pi, j is a polynomial over x1, . . . , xn, y. Hence,
eq. (4) is valid if and only if

∀(x, y) ∈ Rn+1. (x, y) ∈ ψH =⇒

q∨
j=1

pi, j(x1, . . . , xn, y) ≥ 0

holds for each 1 ≤ i ≤ p. On the other hand, to show validity
of the above, it suffices to show that

∀(x, y) ∈ Rn+1. (x, y) ∈ ψH =⇒ pi, j(x1, . . . , xn, y) ≥ 0 (6)

holds for at least one 1 ≤ j ≤ q. In the extended ver-
sion [Akshay et al., 2025a], we show how SubsetDecision
uses Farkas’ Lemma (when the polynomial degree of pi, j is
1) or Handelman’s Theorem (when the polynomial degree of
pi, j is at least 2) to reduce the problem of determining validity
of eq. (6) to solving an LP instance.

SubsetDecision checks if for each 1 ≤ i ≤ p there exists
1 ≤ j ≤ q such that eq. (6) is valid. If the answer is positive,
SubsetDecision concludes that H is contained entirely inside
S ′ and returns ”Inside”. An analogous check of validity of
eq. (5) is performed and if the answer is positive then Sub-
setDecision concludes that H is contained entirely outside S ′
and returns ”Outside”. Finally, if neither eq. (4) nor eq. (5) are
shown to be valid, SubsetDecision returns ”Unknown” which
indicates that further subdivision is needed.
Algorithm Termination and Correctness. The following
theorem shows that Algorithm 1 is guaranteed to terminate
and to return a correct ϵ-tight approximation on the volume
WMI(S ′, 1) =WMI(S ,w), as desired.
Theorem 1 (Termination and correctness, Proof in the ex-
tended version [Akshay et al., 2025a]). Given a bounded
semi-algebraic set S with bounds S ⊆

∏n
i=1[ai, bi], a non-

negative semi-algebraic weight function w and a precision
bound ϵ > 0, Algorithm 1 is guaranteed to terminate and
returns a value M such that

WMI(S ,w) − ϵ ≤ M ≤ WMI(S ,w) + ϵ.

4 Experimental Results
Implementation. We implemented our approach in Python 3
and used SymPy [Meurer et al., 2017] and NumPy [Harris
et al., 2020] for symbolic computations. We also employed
Gurobi [Gurobi Optimization, LLC, 2023] to solve the result-
ing LP instances. Moreover, we integrated our tool (WMI-
LP) into the state-of-the-art WMI framework of [Spallitta et
al., 2024], thus enabling its direct and user-friendly applica-
tion not only for volume computation but also to WMI in-
stances. Both versions of the tool [Akshay et al., 2025b], i.e.
standalone or integrated with [Spallitta et al., 2024], are free
and open-source software and publicly available at GitHub1.
Machine. All experiments were performed on an Intel Xeon
Gold 5115 CPU (2.40GHz, 16 cores) running Ubuntu 20.04
with 64 GB of RAM.
Baselines. We compared our approach against the two in-
tegration solvers available in the WMI framework of [Spal-
litta et al., 2024]. This includes LattE [De Loera et al.,
2004], which is a symbolic integrator, and VolEsti [Chalkis
and Fisikopoulos, 2020], which is sampling-based. Addition-
ally, we also compared against state-of-the-art probabilistic
inference tools, namely PSI [Gehr et al., 2016] and GuBPI
[Beutner et al., 2022]. Moreover, we also compared our tool
against Mathematica [Inc., 2024a]. We did not include Wol-
framAlpha [Inc., 2024b] in our evaluation, as it does not pro-
vide direct control over precision or error bounds, and it runs
on cloud infrastructure with unspecified computational re-
sources. This makes it unsuitable for a fair, apples-to-apples
comparison, unlike Mathematica, which was executed locally
on the same machine as our tool. In all experiments, we set
ϵ = 0.1 and enforce a time limit of 1 hour per instance for all
baselines.
Input Instances. To showcase the merits and limitations of
each approach, we considered two families of functions as
our benchmarks:

1Our tool is available at: https://github.com/destrat18/wmilp.
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WMI-LP GuBPI VolEsti LattE PSI Mathematica
Lower Upper Lower Upper Lower Upper

A12 5.352712 5.452689 0.891150 5.404662 5.155940 5.597974 ER SY 5.401414
A17 31.511295 31.611293 0.000000 31.569187 29.321834 32.967666 ER SY 31.562522
A22 4.045379 4.145252 0.000000 4.093632 3.763386 4.315086 ER SY 4.093190
A30 7.981809 8.081765 0.000000 8.032287 7.591300 8.382684 ER SY 8.031472
A41 1.536057 1.636048 1.206099 1.975841 1.567089 1.681303 ER TO SY
A49 3.846735 3.946729 0.023396 4.013448 3.871012 4.206076 ER ER SY
A53 1.628985 1.728967 1.311641 2.054783 1.604541 1.755675 ER TO SY
B11 8.588160 8.688141 0.000000 8.638746 N/S N/S N/S SY CX
B17 7.498986 7.598938 0.000000 7.548972 N/S N/S N/S SY CX
B18 7.882580 7.982558 0.000000 7.930250 N/S N/S N/S 7.930080 7.930080
B24 4.918883 5.018882 1.059239 4.972304 N/S N/S N/S SY 4.968923
B32 1.996137 2.096055 2.042692 2.045879 N/S N/S N/S SY ER
B35 0.680046 0.778197 0.726561 0.726887 N/S N/S N/S SY 0.726724
B38 1.159555 1.259449 1.209101 1.210712 N/S N/S N/S SY 1.209906

Table 1: A selection of the experimental results. See the extended version [Akshay et al., 2025a] for the complete table. N/S indicates input
not supported, TO indicates a timeout, CX a complex-valued result, SY a symbolic result, and ER an execution error.
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Figure 1: Comparison of the intervals obtained by our approach (WMI-LP) (green), GuBPI (orange), and VolEsti (red) for a selection of
benchmarks. See the extended version [Akshay et al., 2025a] for the entire set of results.
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(A) Randomly-generated Rational Functions. To ensure
unbiased evaluation and demonstrate the robustness of
our method across diverse and arbitrary cases, we gener-
ated a set of 60 rational functions, half with one variable
and the other half with two variables. The polynomials
used in these rational functions are of degree two or three
and their coefficients were picked randomly.

(B) Randomly-generated Radical Functions. This bench-
mark family is similar to the previous case, except that
we consider radical functions instead of mere rational
functions. This set also contains 60 benchmarks, half of
which are square roots of polynomials. As in the previ-
ous case, the coefficients are chosen randomly.

Details of Benchmarks. The extended version [Akshay et
al., 2025a] contains details of all the functions used as bench-
marks.

Summary of Results. Table 1 reports the experimental re-
sults over a selection of the benchmarks. Due to the page
restrictions, a complete table of results, showing the perfor-
mance of our approach and every baseline over every bench-
mark function is available in the extended version [Akshay et
al., 2025a]. We now highlight a couple of important findings.
• Supported Functions. As evident in Table 1, our ap-

proach is robust in handling a wide variety of polyno-
mial, rational and radical functions. It successfully finds
bounds for every benchmark function. In contrast, LattE
could not solve any of the benchmarks, i.e. 0 out of
120, and VolEsti could only support benchmarks in (A),
failing on all benchmarks in (B). GuBPI solved all in-
stances in (A) and 53 of the 60 instances in (B), whereas
PSI solved 2 out of 60 instances in (A) and 18 out of
60 in (B). Mathematica was able to solve 30 out of 60
instances in (A) and 31 out of 60 in (B). However, for
28 instances in (A) and 6 in (B), it returned symbolic
expressions instead of numerical bounds, which were
not usable for further downstream tasks. Additionally,
it produced complex-valued results for 1 instance in (A)
and 20 instances in (B). For the remaining cases, Math-
ematica encountered execution errors. Thus, our LP-
based WMI approach is applicable to functions that were
beyond the scope of all previous state-of-the-art tools.
• Errors. As demonstrated in Section 3, our approach

is able to guarantee any desired bound ϵ on the error.
We used ϵ = 0.1 in the experiments. Among previous
approaches, LattE and PSI are exact but, as mentioned
above, can only handle a small portion of the bench-
marks. In contrast, VolEsti and GuBPI are approximate
but applicable to more instances. Figure 1 provides a
comparison between the error bounds obtained by our
approach (green), GuBPI (orange) and VolEsti (red) for
a selected benchmarks. The results for each bench-
mark and each approach is available in the extended ver-
sion [Akshay et al., 2025a], where we have visualized
the interval between the established lower and upper-
bounds. This figure illustrates our approach’s ability
to consistently guarantee small errors over all bench-
marks. In constrast, the previous methods almost always
provide looser bounds. Moreover, their performance

is not consistent. While they can find relatively tight
bounds on some benchmarks, they provide extremely
loose approximations on others. It is also noteworthy
that VolEsti fails on all benchmarks of family (B). Fi-
nally, even though GuBPI is able to handle the vast ma-
jority of the benchmarks, Figure 1 shows that it often has
errors that are orders of magnitude larger than those of
our approach.

In summary, our experimental results demonstrate that our
LP-based WMI approach is able to handle functions that were
beyond the reach of previous state-of-the-art tools. Previous
exact approaches are applicable only to a small portion of the
benchmarks, for which they are able to synthesize exact so-
lutions. Unfortunately, they fail to find an answer in a vast
majority of the cases. Conversely, previous approximate ap-
proaches are generally able to handle more instances but with
considerably larger error than ours. Thus, our LP-based WMI
approach significantly improves the state-of-the-art in WMI
for semi-algebraic sets and functions in terms of both appli-
cability and accuracy.

Conclusion
In this work, we presented a novel algorithm for comput-
ing Weighted Model Integration (WMI) for a class of semi-
algebraic functions, including rational and radical functions,
with literals defined over non-linear real arithmetic. Our al-
gorithm leverages Farkas’ lemma and Handelman’s theorem
from real algebraic geometry to reduce the WMI problem
to solving a number of linear programming (LP) instances,
providing a computationally efficient and tractable approach.
The algorithm guarantees a formal bound on the approxima-
tion error, ensuring that for any user-specified error ϵ > 0, the
returned approximation is ϵ-tight. Moreover, the algorithm is
parallelizable, enabling further scalability.

We also provided experimental results demonstrating the
superior performance of our algorithm compared to state-of-
the-art tools in WMI and probabilistic inference for ratio-
nal and radical functions. Specifically, our method achieves
tighter error bounds and solves a larger number of instances.
Additionally, we integrated our tool (WMI-LP) with the state-
of-the-art WMI framework to extend its support for rational
and radical functions.
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