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Abstract
This paper tackles the challenge of anomaly im-
age synthesis and segmentation to generate var-
ious anomaly images and their segmentation la-
bels to mitigate the issue of data scarcity. Exist-
ing approaches employ the precise mask to guide
the generation, relying on additional mask gen-
erators, leading to increased computational costs
and limited anomaly diversity. Although a few
works use coarse masks as the guidance to expand
diversity, they lack effective generation of labels
for synthetic images, thereby reducing their prac-
ticality. Therefore, our proposed method simulta-
neously generates anomaly images and their cor-
responding masks by utilizing coarse masks and
anomaly categories. The framework utilizes at-
tention maps from synthesis process as mask la-
bels and employs two optimization modules to
tackle drift challenges, which are mismatches be-
tween synthetic results and real situations. Our
evaluation demonstrates that our method improves
pixel-level AP by 1.3% and F1-MAX by 1.8% in
anomaly detection tasks on the MVTec dataset.
Additionally, its successful application in practi-
cal scenarios highlights its effectiveness, improv-
ing IoU by 37.2% and F-measure by 25.1% with
the Floor Dirt dataset. The code is available at
https://github.com/JJessicaYao/DriftRemover.

1 Introduction
Anomaly Images Synthesis and Segmentation (AISS) task
aims to generate various types of anomaly images and their
segmentation labels for downstream tasks [Li et al., 2021;
Lin et al., 2021; Duan et al., 2023; Hu et al., 2023]. The
emergence of AISS task is due to the scarcity of real-world
anomaly samples, such as industrial inspection and home
cleaning scenarios, making it challenging for downstream
methods to locate anomalous regions that deviate from the
normal areas in images. In this way, AISS can significantly
increase the quantity and diversity of anomaly datasets for
downstream anomaly localization and segmentation methods.

∗Corresponding author (mjsun@suda.edu.cn).

Attention Activation Refinement Module

normal imageprompt

“ a photo of 
hazelnut-
crack.” hazelnut-crack

attention

coarse mask

refined
mask

synthesis image

...

real dataset

(a) (b)

our synthetic results

Anomaly Pattern Optimization Module

coarse mask

refining process

attention map Diffusion Model

previous synthetic results

QKV QKV

ℱℛ

ℱ𝒪

Figure 1: Framework comparison between the baseline method and
ours. (a) The baseline method directly uses attention maps to create
mask labels of synthetic anomalies but suffers from artificial appear-
ance and mismatches. (b) Two modules are proposed in our method
to alleviate these issues. The Attention Activation Refinement mod-
ule (depicted in purple) compels the attention map to converge with
the refined mask, improving consistency between the anomaly re-
gion and its label. The Anomaly Pattern Optimization module (de-
picted in pink) ensures that generated anomaly distribution closely
aligns with the real dataset, enhancing realism of generated images.

Previous AISS methods, such as AnomalyDiffusion [Hu et
al., 2023], heavily rely on the guidance mask, created by ad-
ditional models, to generate the image with the anomalous
region located within this guidance mask, which increases
the computational costs and limits synthetic anomaly diver-
sity. To overcome this limitation, AnoGen [Guan Gui, 2024]
employs the coarse mask (e.g., bounding box), rather than
the precise mask, to guide generation process, enhancing
synthetic diversity while reducing computational demands.
However, this method cannot obtain precise mask labels for
synthetic anomalous images, limiting the applicability of syn-
thetic samples in downstream tasks. To solve this issue, we
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propose a new pipeline to extract cross-attention maps dur-
ing anomalies generation, used as masks after binarization, as
shown in Figure 1(a). These paired samples serve as images
and labels for training in downstream tasks to enhance perfor-
mance. Nevertheless, simply employing this naive pipeline as
a synthetic baseline poses significant drift challenges.

The first drift challenge is the misalignment between gener-
ated mask label and synthetic anomaly region. As illustrated
in Figure 1(a), the black-and-white image in the lower left
corner clearly shows a discrepancy between the mask derived
from the attention layer and the generated image in the lower
right corner. The reason for the discrepancy is that when gen-
erating anomalies with keywords like “crack”, the attention
map activates broad regions and is accompanied by vague
boundaries, leading to inaccurately binarized masks.

Another drift challenge is the distribution discrepancies be-
tween generated images and real-world scene images. This
issue arises from the diffusion model’s tendency to mis-
understand ambiguous terms, leading to significant pattern
and style inconsistency between synthetic and real anoma-
lies [Kim et al., 2024]. For instance, in Figure 1(a), the syn-
thetic anomalies are represented as a cluster of small white
circles, however, the intended anomaly should depict a bro-
ken hazelnut, which fails to accurately represent the nature of
real anomalies. Consequently, this drift limits the utility of
synthetic data for training purposes in downstream tasks.

To address the aforementioned challenges, we undertake
additional optimization of the proposed baseline by introduc-
ing two novel modules in the synthesis process. These mod-
ules specifically solve drift challenges of label mismatches
and pattern discrepancies, which are critical for enhancing
the authenticity of anomalies and the accuracy of masks.

The first module, Attention Activation Refinement, is
meticulously designed to guarantee the congruence between
the synthesised anomaly regions and their corresponding seg-
mentation masks, as shown in the pink part of Figure 1(b). It
initiates with a preliminary coarse mask, which is then sub-
jected to an advanced refining process to generate a refined
mask. By increasing the attention map’s activation values
within the refined mask region, the attention map achieves
more distinct edges, facilitating the production of binarized
masks that are more precisely aligned with the anomaly re-
gion. This refinement leads to a significant improvement in
the accuracy of the mask’s shape and position, surpassing the
initial coarse mask’s accuracy. The accurate mask synthe-
sised by our method in Figure 1(b) corroborates this result.

The second module, Anomaly Pattern Optimization, aligns
the category distribution of generated images with anomaly
regions in real-world scenarios. Specifically, the method
gathers the distribution of anomaly regions for various cat-
egories in the existing dataset. It minimizes the difference
between the real and generated anomaly patterns to improve
the realism of the synthesised anomaly images by making
synthetic anomaly region distributions match the real corre-
sponding category distributions. For instance, in the purple
part of Figure 1(b), the image synthesised by our method can
better reproduce the internal appearance of hazelnuts.

By harmoniously integrating these two optimization mod-
ules with the previously proposed baseline, our method,

DriftRemover, effectively addresses AISS task and provides
high-quality training data, which is crucial for subsequent
anomaly localization and segmentation tasks. Our contribu-
tions can be encapsulated within the following three aspects:

• Our DriftRemover synthesises anomaly images condi-
tioned on coarse masks and anomaly categories, while
generates precise labels utilizing an attention mech-
anism. This effectively synthesises diverse anomaly
images while maintaining high accuracy in labelling,
thereby enhancing the downstream task performance.

• Two optimization modules is introduced to resolve drift
issues in synthesis process: Attention Activation Refine-
ment (AAR) and Anomaly Pattern Optimization (APO).
AAR dynamically refines attention maps for precise seg-
mentation masks, while APO enhances realism of syn-
thesised anomalies by aligning their style with real ones.

• Extensive experiments demonstrate that our generated
data effectively improves the performance of down-
stream tasks. On the MVTec dataset, AP and F1-MAX
increase by 1.3% and 1.8%. On the Floor Dirt dataset,
IoU and F-measure increase 37.2% and 25.1%.

2 Related Work
2.1 Anomaly Detection
Anomaly detection aims to identify samples that significantly
deviate from the normal distribution, indicating anomalies.
Previous methods fall into three categories: Reconstruction-
based methods [Gong et al., 2019; Park et al., 2020; Ristea et
al., 2022; Schlüter et al., 2022] analyse the residuals between
input and reconstructed output, relying on the model’s abil-
ity to reconstruct normal regions while struggling with ab-
normal ones. Embedding-based methods [Roth et al., 2022;
Yao et al., 2023; Zhang et al., 2023c; Liu et al., 2023],
including memory banks, distribution map, teacher-student
and one-class classification, utilize pre-trained networks to
extract features and compress normal features to separate
anomalies, but they lack direct learning of anomaly fea-
tures. Augmentation-based methods use synthetic anomaly
images for training. Image-level approaches [Lin et al., 2021;
Zavrtanik et al., 2021] provide detailed anomaly textures but
lack diversity, while feature-level methods [Yan et al., 2021;
You et al., 2022] are efficient but face challenges in control.

2.2 Anomaly Synthesis
The limited availability of anomaly data sparks significant in-
terest in anomaly generation. Previous methods [Zavrtanik
et al., 2021; Zhang et al., 2023a] use Perlin noise and cut-
paste techniques but lack realism and diversity. Inspired by
GANs [Goodfellow et al., 2014], researchers explore meth-
ods [Niu et al., 2020; Zhang et al., 2021] that require defect-
free samples as input. DFMGAN [Duan et al., 2023] gen-
erates anomaly images and masks but struggles with com-
plex objects. While diffusion models are widely used for
image generation [Ho et al., 2020; Song and Ermon, 2019;
Zhang et al., 2023b], recent approaches [Hu et al., 2023;
Qiu et al., 2025] require separate models for precise masks,
resulting in high computational costs. Moreover, AnoGen
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Figure 2: Illustration of the framework. (a) During training, the proposed method learns the textual embedding corresponding to each
anomaly category by optimizing the generated results of the diffusion model. (b) Early in inference, the Attention Activation Refinement
module amplifies the activation values within the attention map of the anomaly region, ensuring that the generated mask labels closely align
with the actual anomalies. Later, the Anomaly Pattern Optimization module is further proposed, which applies a data distribution model
based on real anomaly datasets to refine the appearances and styles of synthetic anomaly images, enhancing their realism.

[Guan Gui, 2024] uses bounding boxes to eliminate the need
for a mask generator but fails to synthesize precise masks.

3 Method
The proposed DriftRemover pipeline, as depicted in Figure
2, effectively synthesises anomaly images while generating
mask labels. During training, it employs learnable embed-
dings to extract features from various anomalies, aiding in
both image synthesis and mask extraction. In inference,
the Attention Activation Refinement module adjusts atten-
tion values to better align with anomaly regions, while the
Anomaly Pattern Optimization module enhances the realism
of the synthetic anomalies. This approach produces high-
quality synthetic data and accurately matched mask labels.

3.1 Preliminary
The AISS task recently adopts the state-of-the-art (SOTA)
generative model Stable Diffusion (SD) [Rombach et al.,
2022]. During the training stage, SD first encodes the real
anomaly image xr into the latent space via an image encoder
ε(·), resulting in a latent vector zr0 = ε(xr) with the shape of
W ×H×C, where W and H represent the size, and C is the
number of channels. Afterward, Gaussian noise is gradually
added to zr0 in the forward process, as follows:

zrt =
√
ᾱtz

r
0 +
√
1− ᾱtI, (1)

where zrt is the noisy latent vector, and αt is the standard de-
viation of the noise at timestep t. ᾱt represents the cumulative
value from α0 to αt. I denotes the identity matrix. Finally,

a U-Net model is used to estimate the noise increment at any
step, and the objective is to minimize the difference between
the output of the U-Net model and the added noise.

During inference, SD converts a normal image xn into a la-
tent vector zn0 , and then performs a T step forward diffusion
process akin to Equation 1 to obtain znT . In reverse, the well-
trained U-Net model estimates the noise increment at each
step, progressively inferring the latent vector with anomaly
features zs from the noise znT . Simultaneously, a text encoder
converts input prompts into embeddings p ∈ Rl×q with l to-
kens, which serve as conditions to guide U-Net, as follows:

zst−1 =
1
√
αt

(
zst −

1− αt√
1− ᾱt

ϵθ

(
zst , p, t

))
+
√
βtI, (2)

where q is the dimension of text feature; ϵθ(z
s
t , p, t) is the

predicted noise at timestep t; βt is defined as 1− αt.
The cross-attention layer in SD takes three inputs: a query

vector Q, a key vector K, and a value vector V. K and V are
computed from linear projections of the textual embeddings
p, and Q is sourced from a linear projection of each convo-
lution block output. By combining the vectors Q and K in
different layers, the cross-attention map A is as follows:

A =
∑
k

softmax(
QkK

⊤
k√

d
), (3)

where
√
d is a scaling factor, usually set to 1. For each layer,

the map shape is W
k
× H

k
×h× l, where k is the reduction fac-

tor associated with the block’s resolution and h is head num-
ber. These matrices can be used to weight the image pixels,
thereby influencing the final generated anomaly images.
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Figure 3: Stable diffusion’s cross-attention maps for different single
words of the input prompt in the last inference step.

3.2 Mask Labels Synthesis via Attention Module
Cross-attention map reflects the model’s focus on specific ar-
eas of an image based on the input text, allowing it to locate
and distinguish objects. Typically, object category labels are
used as text to activate cross-attention maps and then create
masks [Marcos-Manchón et al., 2024; Nguyen et al., 2024;
Zhao et al., 2023]. However, most anomaly categories in-
clude multiple adjectives or verbs instead of simple nouns,
making it difficult for activation maps to accurately focus on
specific regions. To explore these words effects, we reorga-
nize anomaly categories into descriptive statements to gen-
erate different activation maps. For example, the anomaly
category “broken small” expands to “There is a small dam-
age or break on the bottle”. Figure 3 reveals a key issue: no
single word effectively delineates the triggering factors of
anomalies. Therefore, there is an urgent need to introduce
new keywords or embeddings to accurately capture anomaly
category features, which is used to activate attention maps.

Therefore, learnable embeddings are used to capture the se-
mantic features of different types for various objects, such as
“hazelnut good” and “bottle broken small”. These embed-
dings are continuously updated until the SD model can effec-
tively generate the corresponding distribution of anomalies.
Specifically, an embedding p∗ for any anomaly type is estab-
lished to replace the text conditions of the SD model, which
can be optimized similarly to the LDM loss [Rombach et al.,
2022]. Besides, to ensure that the learned text embeddings
focus exclusively on the region defined by the coarse mask
m without influence from external areas, the model input is
constructed as the concatenation of the noisy embedding of
the real anomaly image zrt , the coarse mask m used to de-
termine the anomaly location, and the embedding of normal
region in the anomaly image with coarse mask area removed
ε(xr(1−m)). For simple notation, we still mark this input as
zrt . Overall, the loss for training embeddings p∗ is as follows:

p∗ = argmin
p∈Rl×q

Ezr
t ,p,t,ϵ

[∣∣∣∣ϵ− ϵθ
(
zrt , p, t

)∣∣∣∣2], (4)

where p represents the text embedding of the anomaly cate-
gory noun with the size Rl×q for initializing the learnable p∗

to reduce training duration. ϵ represents the noise added to
the image. In this way, the text embeddings p∗ accurately re-
flect the characteristic of each anomaly category, thus better
activating the corresponding visual representation regions.

Ultimately, the learned embeddings of different anomaly

types are used to generate attention maps A in the final
timestep. These maps are aggregated and binarized into a
mask using Otsu’s method [Otsu, 1979] to automatically find
the optimal threshold. This process converts the attention
maps into binary anomaly masks, resulting in mask labels
paired with synthesised images for use in downstream tasks.

3.3 Dynamic Inference for Anomaly Synthesis
To craft a superior synthetic dataset, relying on attention maps
for masks is insufficient due to drift issues, resulting in unre-
alism and label inconsistency. To alleviate such issues, we
propose two modules based on energy function mechanism
[Chen et al., 2024]. Specifically, the gradient of energy func-
tion F(c, zst ) is computed to update latent variable zst under
conditions c, thereby improving generation quality. There-
fore, the conditional sampling formula is written as follows:

zst ← zst − σt∇zs
t
F(c, zst ), (5)

where σt = (1 − αt)/αt is a scale factor. By updating the
latent variable, all generated images are influenced by back-
ward guidance. Additionally, our method strategically up-
dates the noise vectors to synthesise anomalies without alter-
ing the regions outside the coarse masks, similar to the ap-
proach outlined in [Avrahami et al., 2022], as follows:

zst−1 ← zst−1m+ (
√
ᾱt−1z

n
0 +

√
1− ᾱt−1I)(1−m), (6)

where zst−1 is the latent vector synthesised by Equation 2.√
ᾱt−1z

n
0 +
√
1− ᾱt−1I is equivalent to the latent vector znt ,

i.e., adding t step noise to the embedding of a normal image.

Attention Activation Refinement Module
The Attention Activation Refinement (AAR) module im-
proves SD’s cross-attention maps to pinpoint anomaly re-
gions as shown in the pink area in Figure 2, using new em-
beddings for “hazelnut-good” and “hazelnut-crack” to acti-
vate the entire object region Ag

t and the rough region of
the anomaly As

t . The overlap of these two activation maps
roughly estimates the anomaly location. To keep synthesised
anomalies within initial coarse mask, a refined mask m̂ is cre-
ated by excluding out-of-bounds intersections as follows:

m̂ = (Ag
t > η)⊙ (As

t > η)⊙m, (7)
where ⊙ represents element-wise multiplication and η de-
notes a threshold for binarizing the attention maps to masks.

This mask guides the inference process to produce anoma-
lies that closely match the expected areas. An energy function
is tailored to maximize activation within the refined mask and
minimize its surroundings on the activation map As of the
new anomaly embedding p∗, as follows:

FR(As
t , m̂) =

∑
i∈N wt,iAs

t,i −
∑

j∈Ñ w̃t,jAs
t,j∑

i∈N wt,i +
∑

j∈Ñ w̃t,j
, (8)

where t illustrates the timestep. N and Ñ represent the pixel
point set with value 0 and value 1 in m̂, representing the nor-
mal and anomaly regions. w and w̃ can be regarded as weight
measures and are calculated as follows:

wt,i =
[
As

t,i

µ

]
, w̃t,j =

[
As

t,j

µ̃

]
, (9)

where µ̃ and µ represent the average activation values of the
anomaly region and the remaining region of the activation
map. All activation maps A are normalized in [0, 1].
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Algorithm 1 Inference process of proposed DriftRemover
Input: normal image xn, coarse mask m, input anomaly
prompt p∗, total inference timestep T
Parameter: conditional noise predictor ϵθ(·), image encoder
ε(·), binary mask threshold η, last timestep γ for adding
AAR module, first timestep δ for adding APO module, func-
tion repeat times Γ, energy value threshold Θ, pre-defined
parameters ᾱT , I , βt and σt

Output: the synthetic anomaly image latent zs0

1: zn0 = ε(xn); znT ∼ N (0, I)
2: zsT = concat

(
znT ,m, ε

(
xn(1−m)

))
3: for t = T to 1 do
4: i = 0
5: if t > γ then
6: Obtain the attention map with new normal embed-

ding Ag
t and new anomaly embedding As

t .
7: m̂ = (Ag

t > η)⊙ (As
t > η)⊙m ▷ Equation 7

8: while i < Γ and FR(As
t , m̂) < Θ do

9: zst ← zst − σt∇zst
FR(As

t , m̂) ▷ Equation 8
i+ = 1

10: end while
11: else if t < δ then
12: while i < Γ and FO

(
f(zr), f(zst )

)
< Θ do

13: zst ← zst − σt∇zs
t
FO

(
f(zr), f(zst )

)
▷ Equation 10

i+ = 1
14: end while
15: end if
16: zst−1 = 1√

αt

(
zst − 1−αt√

1−ᾱt
ϵθ(z

s
t , p

∗, t)
)
+
√
βtI

▷ Equation 2
17: zst−1 ← zst−1m+ (

√
ᾱt−1z

n
0 +
√
1− ᾱt−1I)(1−m)

▷ Equation 6
18: end for
19: return zs0

Anomaly Pattern Optimization Module

The Anomaly Pattern Optimization (APO) module aims to
enhance the realism of synthetic anomaly images by mini-
mizing the discrepancy between them and actual anomalies.
The process begins with encoding real anomaly images xr

through the image encoder ϵ(·), yielding features zr. These
features are then segmented into v×v patches, and their mean
and variance are calculated to establish the probability density
function f(zr) of the real anomaly distribution. For synthetic
anomaly images, patches are extracted directly from the pre-
dicted noise features zst , following the same procedure to de-
termine their probability density. The final step involves com-
puting the KL divergence Dkl between the real and synthetic
anomaly distributions to measure their similarity:

FO

(
f(zr), f(zst )

)
= Dkl

(
f(zr)||f(zst )

)
. (10)

By employing the KL Divergence, APO bridges the gap be-
tween synthetic and real anomaly images, thereby enhancing
the realism of the generated anomaly images.

Efficiency Sampling with Sequential Modules
Using two modules simultaneously updating zst during sam-
pling is inefficient. The generation process is divided into an
early “structure generation” phase and a later “detail refine-
ment” phase [Hertz et al., 2022; Mokady et al., 2023]. Thus,
we recommend applying the AAR module initially for bet-
ter anomaly positioning, then switching to the APO module
to enhance realism. A repeat strategy is also implemented
to strengthen the impact of energy functions. If the energy
value dips below a threshold Θ or the iteration cap Γ is hit at
timestep t, we cease repetition and finalize zst . Details of up-
graded sampling algorithm are shown in Algorithm 1. More-
over, at the final timestep, we execute mask labels synthesis
procedures in Section 3.2, using attention maps of learned
embeddings to generate labels for the synthesised image.

4 Experiment

4.1 Dataset and Metrics
We evaluate our DriftRemover on MVTec [Bergmann et al.,
2019] and Floor Dirt dataset. MVTec’s original training set
consists of 3,629 normal images without any anomaly, while
its original test set contains 467 normal images and 1,258
anomaly images along with their corresponding mask labels
for the anomaly areas. Subsequently, followed by [Hu et
al., 2023], we randomly select 1/3 of the abnormal images
for training DriftRemover and the remaining images are used
to test the results of the downstream tasks. The Floor Dirt
dataset is collected from robotic vacuum cleaners, containing
two types of anomalies: stains on the floor (500 images) and
pet faeces on the floor (458 images). In our experiments, 3/5
of anomalous images are randomly selected for training our
DriftRemover, and 2/5 are used for testing downstream tasks.

The evaluation metrics are divided into two main cate-
gories. First, we assess the diversity and quality of the syn-
thesised anomaly images using IC-LPIPS for diversity and
Inception Score (IS), where higher values indicate better re-
sults. Kernel Inception Distance (KID) is also used for qual-
ity, where lower values indicate better results. Second, we
measure the accuracy improvement of downstream methods
using metrics like Area Under the Receiver Operating Char-
acteristic Curve (AUROC), Intersection over Union (IoU),
Average Precision (AP), and maximum F1 score (F1-MAX),
all of which show better performance with higher values.

4.2 Implementation Details
Our pipeline is built on Stable Diffusion V1.5 [Rombach et
al., 2022], training it for 2,000 epochs with batch size of
4 and image size of 512. The optimizer AdamW utilizes a
scaled learning rate initialized to 1e-4. We use 20 steps and a
guidance scale of 3.5 for image generation, producing 1,000
images per class for evaluation and training. The threshold
Θ and iteration cap Γ are 0.01 and 5. The last timestep γ
for adding AAR module is 600, while the first timestep δ for
adding APO module is 300. The binary threshold η is 180,
patch size v is 3, text dimension q is 768, head number h is 8
and reduction factors k for each layer are 1, 2 and 4.
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Dataset Method IS ↑ IC-LPIPS ↑ KID ↓

MVTec

DiffAug 1.58 0.09 0.06
CDC 1.65 0.07 0.11

Crop-Paste 1.51 0.14 -
SDGAN 1.71 0.13 0.28

Defect-GAN 1.69 0.15 0.11
DFMGAN 1.72 0.20 0.08

AnomalyDiffusion 1.80 0.32 0.13
Ours 1.83 0.32 0.06

Floor Dirt
DFMGAN 3.35 0.22 0.19

AnomalyDiffusion 3.56 0.23 0.10
Ours 3.78 0.26 0.07

Table 1: Comparison of generated results on the MVTec and Floor
Dirt datasets, tested on 1,000 randomly selected synthetic images.

Method AP ↑ F1-MAX ↑
DREAM 97.0 / 54.1 94.4 / 53.1

DFMGAN 94.8 / 62.7 94.7 / 62.1
AnomalyDiffusion 99.7 / 81.4 98.7 / 76.3

Ours 99.7 / 82.7 98.9 / 78.1

Table 2: Comparison of image-level / pixel-level performance of
anomaly detection on MVTec by training a U-Net model on syn-
thetic data from different methods. Bold denotes the optimal results.

4.3 Quality of Generated Anomalies and Labels
Quantitatively compared with the methods in Table 1, our
approach obtains the IS of 1.83 on MVTec, exceeding the
previous SOTA method AnomalyDiffusion [Hu et al., 2023],
whose IS score is 1.80. Additionally, our approach signifi-
cantly improves the KID value, reducing it to 0.06. Although
the IC-LPIPS remains at 0.32, our DriftRemover preserves
the diversity of the generated results while achieving a high
degree of fidelity consistent with real images, thus bolster-
ing the robustness of the downstream tasks. This consistent
performance is further validated on the Floor Dirt dataset, un-
derscoring the method’s robustness and effectiveness.

Figure 4 presents a qualitative analysis of our method on
MVTec and Floor Dirt datasets, comparing it with DFMGAN
and AnomalyDiffusion. Our DriftRemover excels at gener-
ating images that closely align with the target anomaly pat-
tern, such as accurately depicting a “leather cut” anomaly as
a tear with white debris, unlike the coloured patches from
other methods. It effectively addresses drift issues, captures
the features of anomalies, and enables the shape and pattern
of the anomalous areas to more accurately reflect reality.

Additionally, to validate the accuracy of our synthetic mask
labels, we manually annotate the anomalies in the gener-
ated images and compare them with our generated labels us-
ing IoU metric, as depicted in Figure 5. Our DriftRemover
achieves an average IoU of 63.96% across all categories, sig-
nificantly outperforming the IoU results of previous methods.

4.4 Effectiveness for Downstream Task
Anomaly Detection and Localization Task
On the MVTec dataset, Table 2 benchmarks our method
against other generation methods to expand training data for

DFMGAN AnomalyDiffusion OursOriginal Data
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Figure 4: Qualitative comparison on MVTec and Floor Dirt datasets.
Mask labels are placed at the bottom right corner.
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IoU: 49.55%

IoU: 63.96%

Figure 5: Accuracy comparison of synthetic images and masks. The
red line indicates the synthetic mask boundaries, while the manually
labelled masks are in the bottom right of each image. The average
IoU values between labelled and synthetic masks are shown above.

downstream detection and localization tasks. We compare
with Crop-Paste, DRAEM, PRN, DFMGAN, AnomalyDiffu-
sion methods, and synthesise 1,000 images per class to train
a simple U-Net for downstream tasks. Our approach achieves
99.7% AP and 98.9% F1-MAX at the image level, and 82.7%
pixel-level AP and 78.1% F1-MAX, surpassing competitors
by 1.3% and 1.8%, respectively. This indicates the high qual-
ity of our synthetic anomalies and masks, enabling simple U-
Net to achieve exceptional performance of downstream tasks.
Similar AUROC results are observed when compared to both
supervised and unsupervised downstream models in Table 3.

Anomaly Segmentation Task
Table 4 evaluates the performance of our DriftRemover
against DFMGAN and AnomalyDiffusion on Floor Dirt
dataset for anomaly segmentation. We train a SegFormer
[Xie et al., 2021] on 1,000 images from each method. Our

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method Image-level
AUROC ↑ Pixel-level

AUROC ↑

Unsupervised

CFLOW 97.5 97.7
DREAM 97.6 96.7
SSPCAB 97.1 96.3

CFA 99.1 98.0
RD4AD 98.7 97.8

PatchCore 99.2 98.1

Supervised

DevNet 92.2 85.3
DRA 96.1 85.3
PRN 99.4 99.0
Ours 99.5 99.1

Table 3: Anomaly detection and localization AUROC performance
comparison between the model trained on the data generated by our
method and previous methods on MVTec dataset.

Method Category IoU ↑ F-measure ↑

DFMGAN
stains 39.24 39.00
feces 37.10 3.45

average 38.17 21.23

AnomalyDiffusion
stains 35.23 16.00
feces 34.51 7.07

average 34.87 11.54

Ours
stains 70.06 38.00
feces 80.74 54.74

average 75.40 46.37

Table 4: Comparison of anomaly segmentation performance on the
Floor Dirt dataset, by training a SegFormer model on the data gen-
erated by our method and previous methods.

method achieves the highest IoU of 75.40% and F-measure of
46.37%, surpassing other methods and demonstrating supe-
rior real-world capabilities in aiding anomaly segmentation.

4.5 Ablation Study
Effect of Different Components
Our main components: learnable anomaly embedding, At-
tention Activation Refinement (AAR) and Anomaly Pattern
Optimization (APO) are evaluated on MVTec, including five
settings in Table 5: 1) with none of these components; 2) only
learnable anomaly embedding; 3) learnable anomaly embed-
ding and AAR; 4) learnable anomaly embedding and APO;
and 5) the full model (ours). For each setting, 1,000 image-
mask pairs are first generated for quality evaluation and then
used to train the downstream model for the localization eval-
uation. For setting 1), we directly use the embedding of orig-
inal keywords (e.g., “crack”) to synthesise images and labels
while the other settings all use the newly learned embeddings.

The second line of Table 5 shows that the model using
the new embeddings can significantly improve the localiza-
tion task performance. For instance, the pixel-level AP and
F1-MAX reach 35.35% and 38.41%, compared to 9.64%
and 11.43% for the model using original embedding. This
strongly demonstrates the importance and necessity of obtain-
ing embeddings that are tailored to anomaly types, providing
a solid data foundation for our future design. Additionally,
setting 3) is suitable for the task requiring anomaly localiza-

Module IS ↑ IC-LPIPS ↑ KID ↓ AP ↑ F1-MAX ↑
① ② ③

1) 1.66 0.24 0.07 9.64 11.43
2) ✔ 1.62 0.27 0.06 35.35 38.41
3) ✔ ✔ 1.76 0.34 0.07 83.36 78.87
4) ✔ ✔ 1.88 0.21 0.05 51.96 51.54
5) ✔ ✔ ✔ 1.83 0.32 0.06 82.69 78.14

Table 5: Main components’ contributions on MVTec. ①, ② and ③
denote learnable anomaly embeddings, AAR module and APO mod-
ule. Only pixel-level metrics are compared for downstream tasks.

Block Resolution MVTec Floor Dirt
64x64 32x32 16x16 AP F1-MAX IoU F-measure

✔ 76.00 74.11 67.92 31.22
✔ 75.52 73.50 70.63 39.34

✔ 78.57 76.62 75.25 43.76
✔ ✔ 78.67 75.70 73.35 43.59
✔ ✔ 75.71 74.17 75.94 44.59

✔ ✔ 82.69 78.14 75.40 46.37
✔ ✔ ✔ 77.55 75.13 75.25 43.76

Table 6: Evaluation of different cross-attention resolutions. A U-
Net trained on synthetic MVTec images and a SegFormer trained on
synthetic Floor Dirt images are evaluated using pixel-level metrics.

tion (83.6% in AP), while setting 4) is suited for applications
prioritizing the realism of synthetic images (1.88% in IS). Our
model utilizes a balanced setting 5) approach, which achieves
a compromise between the generation fidelity (1.83% in IS)
and the downstream task performance (82.69% in AP).

Effect of Different Feature Scales
The U-Net model in SD incorporates attention blocks at vary-
ing resolutions: 64×64, 32×32, and 16×16, corresponding
to reduction factors k of 1, 2 and 4. In our DriftRemover, the
32 × 32 and 16 × 16 attention blocks are combined to form
the basis of the synthetic mask label. To assess the effect of
these attention blocks, we conducted evaluations with vari-
ous block combinations, as detailed in Table 6. The findings
indicate that the 32 × 32 and 16 × 16 blocks offer optimal
performance. The 16× 16 blocks, being in the deeper layers
of the U-Net, are adept at processing semantic details, captur-
ing finer-edge information. Conversely, the 32 × 32 blocks,
which operate at a more structural level, provide precise loca-
tion data of the anomaly regions. The synergistic use of these
two resolutions yields an accurate segmentation mask.

5 Conclusion
We present DriftRemover, leveraging coarse masks to syn-
thesise anomaly images and corresponding masks. It utilizes
precise anomaly embeddings for attention-guided mask cre-
ation and incorporates two optimization modules: Attention
Activation Refinement for accurate labels and Anomaly Pat-
tern Optimization for realism. Extensive experiments validate
our model’s superiority over state-of-the-art methods in real-
ism and its enhancement of downstream task performance. In
future, we aim to explore co-optimization of anomaly detec-
tion algorithms with synthetic data generation to enhance the
feedback loop for creating more effective training samples.
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