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Reliable and Diverse Hierarchical Adapter for Zero-shot Video Classification
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Abstract

Adapting pre-trained vision-language models to
downstream tasks has emerged as a novel paradigm
for zero-shot learning. Existing test-time adapta-
tion (TTA) methods such as TPT attempt to fine-
tune visual or textual representations to accommo-
date downstream tasks but still require expensive
optimization costs. To this end, Training-free Dy-
namic Adapter (TDA) maintains a cache contain-
ing visual features for each category in a parameter-
free manner and measures sample confidence based
on prediction entropy of test samples. Inspired by
TDA, this work aims to develop the first training-
free adapter for zero-shot video classification. Cap-
turing the intrinsic temporal relationships within
video data to construct and maintain the video
cache is key to extending TDA to the video domain.
In this work, we propose a reliable and diverse Hi-
erarchical Adapter for zero-shot video classifica-
tion, which consists of Frame-level Cache Refiner
and Video-level Cache Updater. Before each video
sample enters the corresponding cache, it needs to
be refined at frame level based on prediction en-
tropy and temporal probability difference. Due to
the limited capacity of the cache, we update the
cache during inference based on the principle of di-
versity. Experiments on four popular video classi-
fication benchmarks demonstrate the effectiveness
of Hierarchical Adapter. The code is available at
https://github.com/Gwxer/Hierarchical-Adapter.

1 Introduction
Large amounts of labeled data, such as K400 [Kay et al.,
2017] and K600 [Carreira et al., 2018], are typically required
in deep learning based video classification tasks for training.
However, annotating sufficient samples is time-consuming
and resource-intensive, which poses significant challenges for
practical applications. In recent years, many works [Rasheed
et al., 2023; Wang et al., 2023; Ju et al., 2022] focus on lever-
aging zero-shot learning techniques to transfer the learned
knowledge to predict novel categories. They have attempted
to tune an off-the-shelf visual encoder, originally developed

augmented videos

semantic consistency

𝓔𝑡

test video

feature 
retrieval

𝓔𝑣 𝓔𝑡

video-level 
update

frame-level 
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(a) Test-time Prompt Tuning
(Training-required)

(b) Hierarchical Adapter
(Training-free)
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Figure 1: Motivation of this work. Existing training-required Test-
time Prompt Tuning optimizes the learnable prompt via semantic
consistency loss. To get rid of the computational burden of gradi-
ent descent, we construct and update a video cache in a training-
free manner, and adjust video-text inter-modal similarity with intra-
modal similarity between the test video and the cache.

for the image domain, on large-scale video datasets for zero-
shot video classification. Though these works have improved
the model architecture to enhance motion semantic represen-
tations, they still suffer from the issue of data shift, which de-
grades the classification performance and is a challenge com-
monly encountered in real-world scenarios.

Test-time adaptation (TTA) offers an alternative approach
for zero-shot transfer, which can effectively address the do-
main shift problem. Existing TTA methods can be di-
vided into two types, i.e., training-required and training-
free. Training-required TTA approaches [Feng et al., 2023;
Yan et al., 2024; Yan et al., 2025; Qu et al., 2025a], repre-
sented by Test-time Prompt Tuning (TPT) [Shu et al., 2022a],
fine-tune visual or textual representations via an unsupervised
semantic consistency loss. Specifically, TPT fine-tunes the
context of the prompt by constraining the consistency of aug-
mented samples, which helps precisely retrieve the knowl-
edge of Vision-Language Models (VLMs). Recent works
have attempted to improve TPT, such as enhancing the diver-
sity of augmented samples through generative models [Feng
et al., 2023] and enriching text descriptions based on large
language models [Yan et al., 2024].

However, training-required approaches involve significant
computational overhead during inference, which hinders their
practical applications in computation-limited downstream
tasks. Training-free TTA methods [Udandarao et al., 2023;
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Karmanov et al., 2024; Zhang et al., 2024b] typically use sup-
port set or cache to store prototypes for each category of the
target domain, and then use these prototypes to adjust the pre-
dictions of the VLM, bridging the gap between the source do-
main and the target domain. The support set or the cache can
be derived from generative models [Udandarao et al., 2023],
historical test samples [Karmanov et al., 2024], or boosting
samples [Zhang et al., 2024b].

Although these methods have made progress in the image
domain, directly applying them to zero-shot video classifica-
tion would encounter the following issues. i) How to rep-
resent a multi-frame video: Simply averaging multi-frame
representations tends to introduce substantial noise, thereby
compromising representation quality. Extracting only a sin-
gle key frame, on the other hand, leads to the attenuation or
loss of crucial temporal cues. ii) How to represent a com-
plicated action: Although entropy-based cache update al-
gorithms can select high-confidence samples, these samples
tend to exhibit high visual similarity, making it difficult to
construct a semantically diverse action feature bank.

To this end, we propose a reliable and diverse Hierarchi-
cal Adapter, which is the first training-free adapter for zero-
shot video classification. This framework consists of two core
modules. Frame-level Cache Refiner (FCR): To capture
rich and effective motion features, we design a comprehen-
sive frame selection strategy with two metrics: prediction en-
tropy and temporal probability difference. Prediction entropy
independently measures the model’s confidence in the predic-
tion results for each frame, while temporal probability differ-
ence assesses the model’s sensitivity to temporal discrimina-
tive cues. We also propose a two-step top-k approach to effec-
tively integrate them. Video-level Cache Updater (VCU):
To represent the underlying data pattern, we introduce a di-
versity criterion to improve the cache update algorithm.

To summarize, we make the following contributions:
• We propose a criterion for selecting reliable and diverse

video data that effectively captures the underlying data
manifold, which is conductive to enhancing cache rep-
resentations.

• We design a hierarchical adapter, a novel adaptation
strategy in test-time adaptation of VLMs for video
classification, which improves training-free dynamic
adapters by progressively filtering out unreliable and re-
dundant data at frame-/video- level.

• Extensive experiments over four benchmarks demon-
strate that the reliable and diverse hierarchical adapter
achieves superior performance while maintaining com-
petitive computational efficiency.

2 Related Work
2.1 Zero-shot Activity Recognition
Zero-shot action recognition [Liu et al., 2011; Qian et al.,
2022; Rasheed et al., 2023] refers to the process of identi-
fying actions in videos without having seen any samples of
those activities during model training, which is crucial for
real-world applications with limited annotated data. Early
studies mainly focus on designing semantic representation

of actions. Many attempts have been made in this re-
gard, such as using manually defined attributes to repre-
sent actions [Liu et al., 2011; Gan et al., 2016b], mining
objects as attributes [Jain et al., 2015; Gan et al., 2016a;
Gao et al., 2019], and utilizing word embeddings of ac-
tion names or action descriptions as semantic representations
[Qian et al., 2022; Mandal et al., 2019; Qin et al., 2017;
Xu et al., 2017]. Differently, recent studies generally delve
into adapting large pre-trained VLMs (e.g., CLIP [Radford et
al., 2021]) to zero-shot video recognition. For instance, ViFi-
CLIP [Rasheed et al., 2023] fully tunes CLIP on videos with
minimal design changes. ActionCLIP [Wang et al., 2023] in-
troduces temporal encoder to strengthen the video represen-
tation. PromptCLIP [Ju et al., 2022] also adopts a lightweight
Transformer on the top of the CLIP image encoder for tem-
poral modeling.

2.2 Prompt-based Learning for VLMs
Prompt learning, derived from natural language processing,
has been studied extensively to leverage the existing knowl-
edge of VLMs to boost their generalization. CoOp [Zhou
et al., 2022b], a typical example of prompt learning for
VLMs, learns prompt context knowledge by inserting learn-
able vectors into the class embeddings and optimizing the to-
kens using supervised classification loss. CoCoOp [Zhou et
al., 2022a] extends CoOp by conditioning the text prompts
on image embeddings to solve the issue of overfitting. Al-
though these methods have demonstrated significant perfor-
mance improvements, their reliance on a large amount of
training data from the target domain hinders their practical
applications in downstream tasks. To this end, Shu et al.
propose a new paradigm, test-time tuning (TPT) [Shu et al.,
2022a], which optimizes prompts dynamically via an unsu-
pervised semantic consistency loss during inference. TPT has
attracted much attention and has been extensively explored
in recent researches [Feng et al., 2023; Yan et al., 2024;
Zhang et al., 2024a; Abdul Samadh et al., 2024]. For exam-
ple, DiffTPT [Feng et al., 2023] leverages generative models
(i.e., Stable Diffusion) to augment test images, making aug-
mented views more diverse. PromptAlign [Abdul Samadh
et al., 2024] extends TPT with the token alignment strategy,
which enforces to bridge the data shift in the test data. DTS-
TPT [Yan et al., 2024] transfers TPT to the video domain,
considering the diversity of motion semantics. Neverthe-
less, these methods require gradient descent during inference,
which is computationally expensive and time-consuming,
thereby conflicting with the principles of test-time adapta-
tion. This paper seeks to achieve efficient test-time adaption
by leveraging test samples cache.

2.3 Memory-based Learning for VLMs
In recent years, it has become a trend to apply memory-
based learning to various tasks in computer vision [Zhang
et al., 2022; Karmanov et al., 2024; Zhang et al., 2024b;
Udandarao et al., 2023; Qu et al., 2024; Qu et al., 2025b] and
natural language processing [Grave et al., 2017; Merity et al.,
2016]. As a parameter-free technique, memory-based learn-
ing enhances test-time adaption by providing efficient infer-
ence. Tip-Adapter [Zhang et al., 2022] is the first to adapt
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(a) Framework of Hierarchical Adapter
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Figure 2: Overview of the proposed reliable and diverse Hierarchical Adapter. (a) Framework of Hierarchical Adapter, which first refines
cache samples and then update the dynamic cache for zero-shot video classification. i) Frame-level Cache Refiner: It selects reliable frames
from the test video based on prediction entropy and temporal probability difference. ii) Video-level Cache Updater: It dynamically updates
the cache during inference based on diversity criterion. (b) Details of temporal probability difference. Each frame performs patch-level
temporal shuffling with its neighboring K frames to compute the temporal probability difference.

VLMs via memory banks, in which a key-value cache model
is constructed from the few-shot training set. SuS-X [Udan-
darao et al., 2023] forms a support set with the help of Stable
Diffusion, which generates salient and informative support
images. To overcome the unavailability of source data during
zero-shot inference and alleviate data shift caused by gener-
ative models, TDA [Karmanov et al., 2024] designs a dual-
cache model constructed from reliable images and their corre-
sponding pseudo-labels during testing. BoostAdapter [Zhang
et al., 2024b] combines instance-agnostic historical cache in
TDA with instance-aware boosting cache, achieving promis-
ing results. In this work, we extend memory-based learning
to the video domain for zero-shot activity recognition.

3 Preliminary
3.1 Problem Statement
This work focuses on transductive test-time adaption for zero-
shot video classification. Given a set of C class labels Y =
{y1, y2, · · · , yC} and a sequence of N testing videos V =
{v1, v2, · · · , vN}, the task of zero-shot video classification is
to predict the label of each testing video v as ŷc ∈ Y while
Y is unseen to the pre-trained model. Specifically, inference
is performed under a transductive setting, prediction for i-th

test sample vi may therefore depend on the representations
and predictions of the first i− 1 samples.

3.2 Memory-based Adaption
Zero-shot Matching. Given an arbitrary pre-trained VLM
(such as CLIP [Radford et al., 2021] and ViFi-CLIP [Rasheed
et al., 2023]) consisting of a visual encoder Ev and a textual
encoder Et, we first encode the test video vi as fvi

= Ev(vi)
and get text features (i.e., zero-shot classifier) as {fc|fc =
Et(tc)}Cc=1, where tc is a manual-crafted text prompt corre-
sponding to class label yc, e.g., “a video of a person doing
[class yc].” The zero-shot matching result of vi and yc can be
denoted as

pc(vi) = fT
c fvi , (1)

which represents the cosine similarity between multi-modal
features after normalizing fc and fvi respectively. Fur-
thermore, the complete output logits of the test video vi is
p(vi) = [p1(vi),p2(vi), · · · ,pC(vi)] ∈ RC .

Training-free Dynamic Adapter. To address the issue of
data shift between source domain and target domain, a widely
used approach is to construct a cache based on target domain,
leveraging the knowledge of target domain data distribution
to guide model inference [Zhang et al., 2022; Karmanov et
al., 2024]. In few-shot action recognition, the support set is
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constructed using annotated training videos, while in zero-
shot action recognition, the cache can be progressively built
during inference, based on test samples and pseudo-labels.
The prediction from the cache can be calculated as

pcache(vi) = A(FT
cachefvi

)Lp, (2)

where A(x) = exp(−β(1 − x)) represents the scaling func-
tion with a smoothing scalar β, Fcache denotes visual features
of samples in the cache, and Lp is the corresponding pseudo-
labels in the form of one-hot vectors.

4 Reliable and Diverse (R&D) Hierarchical
Adapter

Inspired by Training-free Dynamic Adapter (TDA) [Kar-
manov et al., 2024], this work aims to adapt VLMs during
inference by leveraging knowledge from the cache. However,
the cache in TDA adopts a simplistic approach to storing sup-
port samples, failing to capture complicated action seman-
tics. Moreover, the entropy-based cache update strategy in
TDA cannot ensure the diversity of support samples, which
is contradictory to the inherently complex and diverse nature
of motions in real-world scenarios. To this end, we propose
a reliable and diverse hierarchical adapter to enable efficient
and effective test-time adaptation with VLMs. As shown in
Figure 2, R&D Hierarchical Adapter is mainly composed of
Frame-level Cache Refiner (FCR) and Video-level Cache Up-
dater (VCU). In FCR, each video sample is refined at frame
level based on prediction entropy and temporal probability
difference before entering the corresponding cache. In VCU,
the cache is updated based on the principle of diversity.

4.1 Frame-level Cache Refiner
To enhance video representations, we propose a Frame-level
Cache Refiner (FCR), which discards low-confidence frames
based on prediction entropy and temporal probability differ-
ence. In TDA [Karmanov et al., 2024], a single entropy-based
criterion is employed to measure sample reliability. Given
a test video v, the prediction entropy of v is calculated as
e = −

∑C
c=1 p(ŷ = c|v)log p(ŷ = c|v). Although frames

with lower prediction entropy have a lower likelihood of caus-
ing error, entropy is not always reliable as a confidence met-
ric under biased scenarios. To avoid selecting overconfident
samples based on incorrect cues, DeYO [Lee et al., 2024] fur-
ther introduce a probability difference metric to ensure sam-
ple reliability, which we refer to as spatial probability dif-
ference (SPD). SPD quantifies the influence of reliable static
cues, such as structure information, on inference by measur-
ing the pseudo-label probability difference between the orig-
inal frame and its spatial-shuffled variant independently.

Given a test video v and corresponding spatial-shuffled
video vs, SPD is calculated in a parallelized manner as

dspatial = |p(ŷ = c∗|v)− p(ŷ = c∗|vs)|, (3)

where c∗ = argmax
c

p(ŷ = c|v) is the pseudo-label of v pre-
dicted by the VLM. The model is expected to be sensitive to
discriminative factors, for which frames with higher dspatial

are more reliable.

Algorithm 1 Reliable and Diverse Cache Update
Input: test video v, cache, pseudo-label of test video c∗

Parameter: cache size n, similarity threshold τ ,
Output: cache updated

1: if The cache of class c∗ is not full then
2: Add new sample to the corresponding cache.
3: else
4: for i = 1 to n do
5: Calculate similarity between v and i-th sample in

the cache.
6: end for
7: if similaritymax > τ then
8: Sample fusion based on momentum update.
9: else

10: Remove the sample with the lowest confidence.
11: end if
12: end if
13: return cache updated

To further assess the model’s sensitivity to temporal dy-
namic information, we design a temporal probability differ-
ence (TPD), which is shown in Figure 2 (b). TPD measures
the influence of temporal dynamic cues on inference by cal-
culating the pseudo-label probability difference between the
original video and its temporal-shuffled version. Predictions
with larger TPD are more likely to rely on temporal dynamic
cues, indicating that the pseudo-labels are more reliable.

Given a test video v and its temporal-shuffled variant vt,
TPD is obtained as

dtemp = |p(ŷ = c∗|v)− p(ŷ = c∗|vt)|, (4)

where c∗ = argmax
c

p(ŷ = c|v) is the predicted category of
the test video v.

Taking into account that VLMs exhibit bias in per-class
accuracy, we select top-K confident frames for each video,
instead of keeping all frames with confidence scores higher
than a pre-defined threshold, which is a commonly adopted
strategy [Lee et al., 2024]. For a test video v ∈ RT×d, the
refined video v′′ ∈ RK2×d is obtained by

v′ = TopK Selection(v,K1,−e), (5)

v′′ = TopK Selection(v′,K2,dtemp), (6)

where v′ ∈ RK1×d serves as an intermediate result and is not
utilized in the following stages.

4.2 Video-level Cache Updater
The cache stores prototypes of different activities as a

database. During inference, the test video is used as a query to
aggregate information from the cache via similarity-based re-
trieval. However, in zero-shot video classification, the model
cannot access the ground truth labels of historical samples
and must rely on pseudo-labels to construct the cache. This
inevitably introduces noise, which negatively impacts the
model’s performance. Therefore, it is necessary to update the
cache progressively during inference. In TDA, the cache is
implemented as a priority queue, where entropy serves as the
criterion for prioritization.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

The semantics of the same activity are diverse in visual
space, but samples with high reliability are often visual-
similar, which hinders the cache in capturing the underlying
data manifold. To this end, we propose Video-level Cache
Updater (VCU) to maintain a diverse cache.

Specifically, when the test video v is added to the cache,
the prototype most similar to v is updated as

q ← µq + (1− µ)fv, (7)

where µ ∈ [0, 1] is the momentum coefficient, fv is video
embeddings of v, and q is the prototype most similar to v.

In the image domain, the similarity between two images
can be measured by calculating the cosine similarity. How-
ever, in the video domain, temporal sequence matching is re-
quired to evaluate the similarity between videos. We follow
[Haresh et al., 2021] to use dynamic time warping (DTW) to
compute the temporal sequence similarity. Given two video
features fv and fw to be matched, we can obtain the simi-
larity matrix S ∈ Rn×m based on cosine similarity, where
S(i, j) = fvi

· fwj
. DTW can adaptively find the path with

the highest similarity in S. Let the similarity between the
first i frames of fv and the first j frames of fw be denoted as
Sseq(i, j), then the following state transition equation can be
established.

Sseq(i, j) = S(i, j) + min{Sseq(i− 1, j),Sseq(i, j − 1),

Sseq(i− 1, j − 1)}, (8)

the similarity between fv and fw is given by Sseq(n,m).
For clarity, we provide the whole cache update process in

Algorithm 1 in the form of pseudo-code.

5 Experiments
5.1 Datasets
HMDB-51 [Kuehne et al., 2011] is a small-scale action
recognition dataset. It contains around 7,000 labeled videos
sourced from YouTube, covering 51 activity categories.
UCF-101 [Soomro, 2012] consists of 13,320 videos cover-
ing 101 categories, which can be further grouped into five
main categories: Body motion, Human-human interactions,
Human-object interactions, Playing instruments, and Sports.
Kinetics-600 [Carreira et al., 2018] is a large-scale video
dataset, containing 600 human action classes, with at least
600 video clips for each action. Each video is collected and
annotated from YouTube and lasts approximately 10 seconds.
ActivityNet-200 [Fabian Caba Heilbron and Niebles, 2015]
is also a large-scale action recognition benchmark, but it pro-
vides about 20k untrimmed videos of 5 to 10 minutes from
200 activity categories.

5.2 Implementation Details
We utilize a pre-trained ViT-B/16 of CLIP as the founda-
tion model, and the model is not fine-tuned on extra large
video datasets. In test-time adaption, we sample T = 32
frames from each test video. We use top-1 accuracy(%) as
our evaluation metric. We perform a search for hyperparame-
ter on the validation set of Kinetics-400. In FCR, we select 8
frames based on prediction entropy, and subsequently select 5

frames based on TPD to construct refined video embeddings.
When calculating TPD, each frame is divided into 7×7 image
patches, and temporal shuffling is applied between adjacent 2
frames. In Algorithm 1, cache size n is set as 10 and similar-
ity threshold τ is 0.95. In Eq. 2, β is 8 according to TDA, and
in Eq. 7, µ is set to 0.5. All the experiments are conducted
using a single NVIDIA 3090 24GB GPU.

5.3 Comparison With Other Methods
We conduct a comprehensive comparison of the proposed Hi-
erarchical Adapter with popular zero-shot video classifica-
tion approaches spanning various methodological categories.
Specifically, uni-modal zero-shot video recognition models
are trained on video data with elaborated representation en-
gineering. Adapting pre-trained CLIP involves additional
temporal learners or vision-language prompting techniques
without training the encoders while tuning pre-trained CLIP
means fully fine-tuning the CLIP model via video data. Fol-
lowing [Rasheed et al., 2023], we report the mean and stan-
dard variance of the results.

As we can see in Table 1, our method surpasses conven-
tional uni-modal zero-shot video recognition methods, e.g.,
ER-ZSAR [Chen and Huang, 2021], JigsawNet [Qian et al.,
2022], and ResT [Lin et al., 2022], by a significant margin
on all benchmarks. Our approach also outperforms models
such as Vita-CLIP [Wasim et al., 2023] and VicTR [Kahatapi-
tiya et al., 2024] that adapt pre-trained CLIP. Compared with
ViFi-CLIP [Rasheed et al., 2023], which serves as a base-
line for our method and fine-tunes the pre-trained CLIP on
Kinetics-400, our method is also superior.

5.4 Ablation Study
Component analysis. To verify the effectiveness of the
proposed FCR and VCU, we conduct ablation experiments on
HMDB-51 and Kinetics-600 benchmarks. As shown in Table
2, FCR brings 2.7% and 1.9% performance gains on HMDB-
51 and Kinetics-600, respectively, which indicates that FCR
can focus on reliable frames. In addition, VCU improves on
the two datasets by 2.3% and 0.9%, respectively, which sug-
gests that VCU can retain diverse video samples in the cache.
Moreover, by combining the two modules, our full model
achieves better results, confirming the complementarity and
effectiveness of the proposed framework.

Reliability metric. We examine the impact of the proposed
temporal probability difference by contrasting it with the
model with prediction and spatial probability difference or
with prediction entropy only. A shown in Table 3, tempo-
ral probability difference achieves better performance, while
spatial probability difference has almost no effect. This study
confirms the complementarity between prediction entropy
and temporal probability difference.

Diversity strategy. To investigate the effectiveness of di-
versity criterion, we compare it with the cache updater with-
out feature fusion. As shown in Table 4, our proposed fea-
ture fusion rule brings 0.9% and 0.6% performance gains on
HMDB-51 and Kinetics-600, respectively, indicating that the
cache we construct better represents motion semantics.
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Method Encoder HMDB-51 UCF-101 Kinetics-600 ActivityNet-200

Uni-modal zero-shot video recognition models
E2E [Brattoli et al., 2020] R(2+1)D 29.8 44.1 − 26.6
ER-ZSAR [Chen and Huang, 2021] TSM 35.3± 4.6 51.8± 2.9 42.1± 1.4 −
JigsawNet [Qian et al., 2022] R(2+1)D 38.7± 3.7 56.0± 3.1 − −
ResT [Lin et al., 2022] Resnet-101 41.1± 3.7 58.7± 3.3 − 32.5

Adapting pre-trained CLIP
Vanilla CLIP [Radford et al., 2021] ViT-B/16 46.2± 0.2 63.1± 0.5 64.1± 0.8 73.9± 0.6
ActionCLIP [Wang et al., 2023] ViT-B/16 40.8± 5.4 58.3± 3.4 66.7± 1.1 −
A5 [Ju et al., 2022] ViT-B/16 44.3± 2.2 69.3± 4.2 55.8± 0.7 −
Vita-CLIP [Wasim et al., 2023] ViT-B/16 48.6± 0.6 75.0± 0.6 67.4± 0.5 −
XCLIP [Ni et al., 2022] ViT-B/16 44.6± 5.2 72.0± 2.3 65.2± 0.4 −
VicTR [Kahatapitiya et al., 2024] ViT-B/16 51.0± 1.3 72.4± 0.3 − −
Tuning pre-trained CLIP
ViFi-CLIP [Rasheed et al., 2023] ViT-B/16 53.9± 0.7 76.2± 0.8 67.3± 1.0 80.6± 0.8
BIKE [Wu et al., 2023] ViT-B/16 49.1± 0.5 77.4± 1.0 66.1± 0.6 75.2± 1.1

ViFi-CLIP + Hierarchical Adapter ViT-B/16 54.9± 0.1 77.6± 0.2 69.0± 0.1 81.8± 0.2

Table 1: Comparisons with state-of-the-art methods for zero-shot video classification.

FCR VCU HMDB-51 Kinetics-600

% % 46.2 64.1
! % 48.9 66.0
% ! 48.8 65.0
! ! 51.2 67.4

Table 2: Effectiveness of different components in our method.

Metric HMDB-51 Kinetics-600

Ent 50.7 66.8
Ent & SPD 50.8 66.8
Ent & TPD (Ours) 51.2 67.4

Table 3: Performance comparison using different confidence metric.
Ent represents prediction entropy, SPD is spatial probability differ-
ence, and TPD (§4.1) denotes temporal probability difference.

Rule HMDB-51 Kinetics-600

Feature Concatenate 50.3 66.8
Momentum Update (Ours) 51.2 67.4

Table 4: Effect of different feature fusion rules. Feature Concatenate
refers to directly appending new video embeddings to the cache.

Strategy HMDB-51 Kinetics-600

Max 49.6 66.2
Mean 49.4 66.9
Diagonal 49.4 66.2
DTW (Ours) 51.2 67.4

Table 5: Different implementation of temporal sequence matching
strategies.

Pre-trained VLM HMDB-51 Kinetics-600

CLIP with ViT-B/32 40.4 60.7
+ Hierarchical Adapter 45.3 63.6
CLIP with ViT-B/16 46.2 64.1
+ Hierarchical Adapter 51.2 67.4
CLIP with ViT-L/14 50.9 72.1
+ Hierarchical Adapter 54.3 75.4
ViFi-CLIP with ViT-B/16 53.9 67.3
+ Hierarchical Adapter 54.9 69.0

Table 6: Top-1 accuracy(%) on HMDB-51 and Kinetics-600 using
different VLMs, i.e., Vanilla CLIP [Radford et al., 2021] and ViFi-
CLIP [Rasheed et al., 2023].

Temporal sequence matching. To validate the superiority
of Dynamic Time Warping, we compare it with various tem-
poral sequence matching strategies. In Max strategy, the max-
imum of the similarity matrix S is taken as the final result. In
Mean setting, the average of S is the similarity between the
two videos. In Diagonal strategy, the diagonal of the similar-
ity matrix S is involved in temporal sequence matching. The
optimal path from the top-left corner to the bottom-right cor-
ner of S is found by DTW to measure the similarity between
the two videos. The results are provided in Table 5, which in-
dicates Dynamic Time Warping outperforms the other three
strategies.

Generalization to different pre-trained VLMs. We use
Vanilla CLIP with ViT-B/16 as the VLM of choice through-
out our ablation studies. In Table 6, we demonstrate results
when our proposed Hierarchical Adapter is applied on top
of ViFi-CLIP and three versions of Vanilla CLIP. Hierarchi-
cal Adapter improves model performance on both HMDB-51
and Kinetics-600, indicating the proposed framework can be
applied to an arbitrary VLM.
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Figure 3: Sensitivity to test-time sample order on HMDB-51 (a) and
Kinetics-600 (b). Vanilla CLIP [Radford et al., 2021] with ViT-B/16
is used as the VLM of choice.

Sensitivity to test time sample order. As Hierarchical
Adapter classifies videos online, the performance of the
model is inevitably influenced by the order of the test videos.
To investigate this influence, we conduct five rounds of ex-
periments on HMDB-51 and Kinetics-600, with each round
employing a different sample order. As we can see in Fig-
ure 3, the model’s performance is slightly influenced by the
sample order fluctuations on both datasets. Regardless of the
sample order, the performance of our proposed model consis-
tently surpasses Vanilla CLIP.
Visualization. In Figure 4, we apply t-SNE to visualize the
stored video features in the cache under the framework of
TDA [Karmanov et al., 2024] and our proposesd Hierarchi-
cal Adapter on the HMDB-51 [Kuehne et al., 2011] dataset.
The stored video features are highlighted using different col-
ors while the others are marked in gray. The visualization
results indicate that Hierarchical Adapter is able to construct
and update reliable and diverse prototypes to represent mo-
tion semantics.

6 Conclusion
In this work, we propose an effective and efficient Hierarchi-
cal Adapter, which is the first training-free test-time adapter
for zero-shot video classification. This framework aims to
select reliable and diverse visual features at frame level and
video level, which consists of two core modules: 1) Frame-
level Cache Refiner for selecting rich and effective motion
features; 2) Video-level Cache Updater for capturing the un-
derlying data manifold. Experimental results on four video
classification benchmarks demonstrate the superiority of our
Hierarchical Adapter against existing methods. In future
work, exploring the potential of leveraging the rich text rep-
resentations provided by large language models to enrich the
cache holds promising prospects.

Acknowledgments
The work is supported by the National Natural Science Foun-
dation of China (Grant No. 62222207, 62427808, 62472208),
and the open Foundation of the Key lab (center) of An-
hui Jianzhu University Anhui Province Key Laboratory of
Intelligent Building & Building Energy Saving (Grant No.
IBES2024KF02). Wenxuan Ge and Peng Huang equally con-
tributed to this work, Xiangbo Shu and Rui Yan are the equal
corresponding authors.

(a) Under the framework of TDA [Karmanov et al., 2024] 

(b) Under the framework of Hierarchical Adapter (ours)

Figure 4: t-SNE visualizations of the stored video features in the
cache under the framework of TDA (left) and our proposed Hierar-
chical Adapter (right).
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