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Abstract
Anomaly detection plays a pivotal role in industrial
quality assurance processes, with cross-domain
problems, exemplified by the model upgrade from
RGB to 3D, being prevalent in real-world scenar-
ios yet remaining systematically underexplored. To
address the severe challenges posed by the ex-
treme lack of datasets in target domain, we retain
the knowledge from source models and explore a
novel solution for anomaly detection through cross-
domain learning, introducing HyperTrans. Target-
ing few-shot scenarios, HyperTrans centers around
hypergraphs to model the relationship of the lim-
ited patch features and employs a perturbation-
rectification-scoring architecture. The domain per-
turbation module injects and adapts channel-level
statistical perturbations, mitigating style shifts dur-
ing domain transfer. Subsequently, a residual
hypergraph restoration module utilizes a cross-
domain hypergraph to capture higher-order corre-
lations in patches and align them across domains.
Ultimately, with feature patterns exhibiting reduced
domain shifts, an inter-domain scoring module ag-
gregates similarity information between patches
and normal patterns within the multi-domain sub-
hypergraphs to make an integrated decision, gen-
erating multi-level anomaly predictions. Exten-
sive experiments demonstrate that HyperTrans of-
fers significant advantages in anomaly classifica-
tion and anomaly segmentation tasks, outperform-
ing state-of-the-art non-cross-domain methods in
image-wise ROCAUC by 13%, 12%, and 15% in 1-
shot, 2-shot, and 5-shot settings on MVTec3D AD.

1 Introduction
Image anomaly detection aims to identify abnormal images
and segment anomalous subregions, playing a vital role in
industrial quality control [Defard et al., 2021; Roth et al.,
2022]. Traditional methods have predominantly relied on
the RGB modality, achieving significant progress [Zuo et al.,

∗Co-Correpsonding Authors.

Figure 1: Challenges of cross-domain anomaly detection (Up) and
our solutions (Down). A representative example is illustrated:
source domain with RGB images and target domain with depth im-
ages. CS is short for ‘Change of Style’. IB stands for ‘Indefinable
Boundaries’. ICV means ‘Inter-class Variance’.

2024b; Li et al., 2024]. However, advancements in technol-
ogy have facilitated the adoption of image acquisition de-
vices with multiple modalities, introducing pervasive cross-
domain [Torralba and Efros, 2011] challenges. Among these,
the shift to 3D is the most representative, as 3D sensors
provide unique advantages for detecting depth-related de-
fects [Zavrtanik et al., 2024]. This transition has increased
demand for model upgrades. Various approaches have been
proposed from a non-cross-domain perspective, including
point cloud-based methods [Wang et al., 2023] and depth
map-based methods [Chen et al., 2023; Liu et al., 2023], ap-
plied in both single-modal and multi-modal scenarios.

However, these non-cross-domain methods encounter in-
herent challenges. Multi-modal approaches, which rely on
the collaborative input of both source and target data, im-
pose high demands on acquisition devices and modality align-
ment. Single-modal methods, which retrain the source-
specific model, tend to discard valuable information em-
bedded in the original source model-information, optimized
with extensive validated data. Furthermore, all existing ap-
proaches encounter substantial challenges due to the limited
availability of target datasets, which are characterized by ex-
treme scarcity and insufficient labeled samples. This limita-
tion hinders the effective training of large-scale target models,
particularly during the initial phases when acquiring adequate
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labeled data remains a resource-intensive endeavor.
To address these challenges and preserve the effective su-

pervisory signals in the source model, we introduce and ex-
plore the feasibility of cross-domain (CD) adaptation [Wilson
and Cook, 2020; Zhang et al., 2022] in industrial anomaly
detection. This approach transfers and fine-tunes the source
model for other domains. To further mitigate the issue of lim-
ited target domain data, we emphasize few-shot learning (FS)
scenarios [Huang et al., 2022; Xie et al., 2023a]. Specif-
ically, we conduct the first dedicated study on the problem
of Cross-Domain Few-Shot Image Anomaly Detection (CD-
FSAD), which transfers knowledge from the source domain
and leverages few-shot samples from the target domain, pro-
viding an innovative solution to anomaly detection.

Cross-domain adaptation in defect detection poses signifi-
cant challenges. As illustrated in Figure 1, images captured
by different sensors exhibit significant disparities. Achiev-
ing domain alignment is impeded by three key factors: 1)
changes in image style (CS), which hinder feature extrac-
tion; 2) blurred boundaries (IB), which degrade anomaly seg-
mentation accuracy; and 3) inter-class variance (ICV) [Fu
et al., 2025], which compromises defect classification pre-
cision. To systematically address these challenges, we pro-
pose an innovative perturbation-rectification-scoring frame-
work named HyperTrans, which maximizes the exploitation
of source-domain information by hierarchically aligning and
scoring patches across domains, achieving cross-domain gen-
erality and defect-detection specificity.

Specifically, a domain perturbation module injects
channel-level perturbations to simulate new domain styles,
followed by a lightweight adapter to align these features
with the original domain, improving generalization. Further-
more, limited samples exhibit inherent relational information,
as different patches from both domains may share similar
properties, such as reflecting translation and rotation invari-
ance of the same object attributes. To capture this higher-
order correlations and enhance boundary delineation, we
construct cross-domain hypergraphs [Hamilton et al., 2017;
Gao et al., 2020; Kipf and Welling, 2022; Feng et al., 2023]
that link patches globally across samples and domains. A
residual hypergraph convolutional network (ResHGNN) fur-
ther integrates and refines these latent relationships, with
pseudo-features designated for target domain features, en-
abling effective cross-domain feature alignment.

While improving target domain adaptability, the previous
training strategy also brings the source and target domain
patches closer, thereby enhancing the utility of the source do-
main bank. Consequently, we incorporate the source domain
bank into inference and propose a cross-domain scoring mod-
ule leveraging subhypergraphs to assign anomaly scores and
segmentation maps. By synthesizing differential outcomes
between normal patterns across domains and query features,
the module offers a unified solution to ICV and enables more
precise anomaly classification and segmentation.

Our main contributions are listed as follows:
1) We pioneer the application of domain adaptation to

image anomaly detection and propose an innova-
tive perturbation-rectification-scoring framework tai-
lored for cross-domain few-shot scenarios, facilitating

efficient knowledge transfer between domains with min-
imal labeled data.

2) We design a compact hypergraph cross-domain anomaly
detection module. Centered on hypergraph, three key
functions are implemented: a residual hypergraph con-
volutional network to model cross-domain higher-order
correlations, a pseudo-feature generation method to
guide the alignment and a cross-domain scoring method
leveraging cross-domain normal patch patterns to facili-
tate anomaly detection.

3) Comprehensive experiments validate the superiority of
the proposed model, significantly outperforming other
state-of-the-art non-cross-domain methods in few-shot
anomaly detection tasks and establishing a benchmark
for cross-domain few-shot anomaly detection.

2 Related Works
2.1 Image Anomaly Detection
Anomaly detection identifies rare data points that indicate de-
fects in industrial production [Defard et al., 2021; Roth et al.,
2022]. Similar to surface anomaly detection [Zavrtanik et al.,
2022], both aim to recognize unexpected patterns in data or
images. Methods for anomaly detection can be broadly clas-
sified into two categories: contrastive reasoning based meth-
ods and meta-learning based methods. Among the contrastive
methods, image-level contrastive reasoning focuses on com-
paring entire images, such as in SimpleNet [Liu et al., 2023],
which learns simpler representations for anomaly detection
through image-level reconstruction. Feature-level contrastive
reasoning compares features extracted from images, and in-
cludes methods like PatchCore [Roth et al., 2022], which
performs anomaly detection by comparing feature patches.
Instead, DSR [Zavrtanik et al., 2022], which trains a gen-
eral VQ-VAE [Van Den Oord et al., 2017] and a special-
ized decoder to output anomaly maps, can be categorized as a
meta-learning-based method. Similarly, AST [Rudolph et al.,
2023] is also a meta-learning based method, as it employs
a student-teacher architecture and utilizes knowledge distil-
lation for anomaly detection. However, neither method can
solve the cross-domain problem, as its model cannot adapt
well to the diverse styles of features on the target domain.

2.2 Few-shot and Cross-domain Learning
In few-shot defect detection, many methods have been ex-
plored. For example, CLIP-FSAC [Zuo et al., 2024a] lever-
ages the high generalization ability of the CLIP model and
uses an alternately trained adapters to enable few-shot defect
classification, demonstrating that adapters are effective for
transferring the model to new domains. Additionally, graph-
based methods have shown promising results by exploiting
the correlation information between samples. The graph
structure can effectively reduce the reliance on the number of
samples by leveraging information from a few samples [Xie
et al., 2023b]. In this work, we generalize this idea to hy-
pergraph and extend it to model cross-domain feature pat-
terns. Although cross-domain approaches have not been ex-
clusively explored in defect detection, many general cross-
domain frameworks [Muandet et al., 2013; Liu et al., 2024;
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Fu et al., 2025] have emerged in recent years and can serve as
paradigms. For instance, PDA [Bai et al., 2024] also inher-
its the high generalization capability of the CLIP model and
utilizes cross-domain memory banks with a cross-attention
enhancement mechanism, addressing the domain adaptation
problem and more relevantly, demonstrating the effectiveness
of memory banks in cross-domain tasks. DR-Adapter [Su
et al., 2024] achieves top results in cross-domain few-shot
segmentation through perturbations and a novel cyclic per-
turbation correction model. However, it is a one-to-one cor-
rection mode and lacks targeted exploration of relationships
in small sample settings. By leveraging these approaches and
uncovering high-order patch correlations, we introduce cross-
domain few-shot learning to anomaly detection via the Hy-
perTrans framework, which is tailored for defect detection
and holds broader cross-domain applicability.

3 Methodology
3.1 Problem Definition
A typical defect detection task includes anomaly classifica-
tion (AC) and anomaly segmentation (AD) [Li et al., 2024].
The dataset is divided into a normal sample set N and an
anomaly sample set A. The goal is to train a model f(·)
in an unsupervised manner, using only normal samples from
dataset x ∈ N , to produce output consisting of a binary clas-
sification result for defect detection (denoted as a) and a bi-
nary semantic segmentation result for defect localization (de-
noted as S), where the classification result a is more primary.
The whole process can be expressed as:

a, S = f(x),

{
x ∈ N , if training
x ∈ N ∪A , if testing

, (1)

Cross-domain few-shot anomaly detection aims at gener-
alizing and transferring the applicability from the source do-
main to the target domain, where only a few normal sam-
ples are available for training. Formally, given a model f(·)
trained with data from the source domain x ∈ Ns and few-
shot target domain normal samples N few-shot

t , the task is to
align the model to mitigate the issue of domain discrepancy
between Ns ∪ As and Nt ∪ At. The training process is con-
ducted on the source domain followed by fine-tuning on the
target domain, and the inference process is performed on the
target domain, which can be denoted as:

a, S = f(x),

{
x ∈ Ns ∪N few-shot

t , if training
x ∈ Nt ∪At , if testing

. (2)

3.2 Hyper-graph Cross-domain Few-shot
Anomaly Detection Framework

Overview
To accomplish CD-FSAD, we propose a novel framework
called HyperTrans, with its architecture illustrated in Fig-
ure 2. The training process is firstly conducted on the source-
domain, where the domain adapter is optimized with per-
turbed patches and a source-domain feature bank is gener-
ated. Correspondingly the target feature bank is generated
with few-shot target samples. The two banks are united

to construct a cross-domain hyper-graph, representing the
higher-order correlations between patches. Subsequently, a
pseudo-feature is assigned to each feature through the hyper-
graph, and the distances between them are reduced by the
hyper-graph residual network to correct the cross-domain fea-
ture shift. During the inference process, the the source and
target domain subhypergraphs are separately contracted along
hyperedges to compute the anomaly score of patches, and the
vertice-level results are weighted and integrated to form the
image-wise anomaly score and pixel-wise anomaly map.

Domain Perturbation
Previous studies [Zhou et al., 2021; Su et al., 2024] have
shown that perturbing channel statistics can effectively sim-
ulate different domain styles, thereby enhancing the domain
adaptability. Building on this insight, we apply this technique
to simulate diverse image patches extracted by the backbone.

For clarity, we denote the feature extractor symbolically
as B(·), which derives patch features F = B(Ns) from the
source samples Ns. Given the feature set F ∈ Rn×c×h×w,
the mean avg(·) and variance std(·) are first calculated to rep-
resent feature channel statistics:

avg(F ) =
1

hw

h∑
i=1

w∑
j=1

F,

std(F ) =

√√√√ 1

hw

h∑
i=1

w∑
j=1

(F − avg(F ))2,

(3)

where n is the number of patches, c is the number of channels,
h and w represent the height and weight of the patches. In
defect detection, changes are typically localized and abrupt.
Therefore, instead of using Gaussian noise, we design an al-
ternative mechanism based on Perlin noise [Perlin, 1985] to
better approximate smooth local variations in spatial struc-
tures and perturb the channel statistics (mean and variance)
of feature maps. Specifically, two perturbation factors, Pavg
and Pstd, are generated using Perlin noise, with dimensions
matching the feature channels. These factors are applied to
adjust the original mean and standard deviation as follows:

avgp(F ) = avg(F ) + Pavg · avg(F ),

stdp(F ) = std(F ) + Pstd · std(F ).
(4)

The perturbed statistics are then integrated into the Adap-
tive Instance Normalization (AdaIN) formula [Huang and Be-
longie, 2017] to compute the modified feature map:

ω(F ) = stdp(F ) ·
F − avg(F )

std(F )
+ avgp(F ). (5)

To simplify, this can be rewritten as:

ω(F ) = (1 + Pstd) · F + (Pavg − Pstd) · avg(F ). (6)

Such perturbations are accommodated by a learnable
adapter of the deep layers of the backbone. To bring the sim-
ulated features Fp closer to the original features Fo, a domain
perturbation loss with Mean Squared Error (MSE) is devel-
oped as the objective function, formally expressed as:

Ldp =
1

n
∥F − ω(F )∥2, (7)
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Figure 2: The architecture of HyperTrans.

where ∥ · ∥2 denotes calculating the 2-norm of the matrix. n
is the number of elements in the patch.

This approach dynamically adjusts the perturbation of the
mean and variance using Perlin noise, leveraging its smooth,
spatially coherent properties. Unlike direct noise addition,
this method seamlessly integrates the perturbations with the
feature map’s channel statistics, resulting in spatially consis-
tent and locally adaptive feature variations. Subsequently,
through Ldp, the adaptability of the original backbone to dif-
ferent domain styles is augmented.

Hyper-graph Domain Rectification
To mitigate the domain discrepancy of patch features across
different domains, we designed a cross-domain hypergraph
feature correction module (HDR) centered on hypergraphs.
Samples from the source and target domains represent dif-
ferent manifestations of the same object, with intra-domain
and inter-domain patches exhibiting correlations—such as
describing the same attributes of an object. Hypergraph is
utilized to bridge such high-order correlations. Unlike edges
in simple graphs, hyperedges in hypergraphs naturally simu-
late the attribute features shared among multiple vertices.

Each core patch in the banks from different domains is
treated as a vertex. If let Fs denote the set of patches from
the source domain and Ft denote the patches from the tar-
get domain, the cross-domain hypergraph can be represented
as G = {Fs ∪ Ft, E ,W}, where E is the hyperedge set.
W ∈ R|E|×|E| is a diagonal matrix, where Wi,i denotes the
weight of the i-th hyperedge.

The hyperedges are constructed based on the nodes with
the reciprocal of Euclidean distance being the similarity met-
ric. A hyperedge is created for each node, connecting it to
other nodes based on similarity. For a source feature bank
containing |Fs| patches and a target bank with |Ft| patches, a
total of |Fs|+ |Ft| hyperedges are constructed in this manner.

For computational convenience, the hypergraph is repre-
sented in matrix form as H ∈ [0, 1]|Fs∪Ft|×|E| where each
row represents the vertex and each column represents a hy-
peredge. The value of Hi,j ∈ [0, 1] indicates the correlation
from i-th vertex to the j-th hyperedge. To leverage the high-
order relational information embedded in the hypergraph to
guide feature rectification, a hypergraph convolution [Gao et

al., 2022] (HGNNConv) is employed. It is based on hyper-
graph convolution layers c(·), defined as follows:

c(F ) = σ
(
D

− 1
2

v HWD−1
e H⊤D

− 1
2

v FΘ
)
, (8)

where Dv and De are the diagonal degree matrices for vertex
and hyperedge, respectively. Θ ∈ R is the trainable parame-
ter for the HGNNConv layer. By applying HGNNConv on the
hypergraph constructed from cross-domain patches, the gen-
erated structure-aware embeddings can capture latent collab-
orative information from both the source and target domains.

The final hypergraph network is constructed with two lay-
ers of HGNNConv. Additionally, a residual structure is
equipped to preserve the original features and reduce the
compromise of feature correction on the original information.
The overall output of the Res-HGNN is expressed as:

R(F ) = αc1(dropout(sigmoid(c2(F )))) + (1− α)F, (9)

where α is a hyperparameter to balance the corrected and
original features. The dropout rate is set to 0.5.

The pseudo feature generation is then developed to assign a
prototype to each patch by leveraging the correlation informa-
tion within the hypergraph. Specifically, for each node in the
hypergraph, the feature of the most correlated node within its
corresponding hyperedges is selected as the pseudo feature.
In matrix form, the generation process can be denoted as:

S(F ) = g(F, max index(Hc)), (10)

where g(a, b) represents extracting elements from matrix a
based on index list b and max index(·) outputs the index of
the largest component for each row. InHc, non-cross-domain
connections are set to 0.

To align the output features with the pseudo features and
the original ones, Mean Squared Error is adopted:

Ldr =
1

n
∥R(F )− S(F )∥2 + 1

n
∥R(F )− F∥2. (11)

Cross-domain Scoring
The feature bank from the source domain stores extensive
information about normal samples. Relying on the feature
bank for inference solely on target domain samples is insuffi-
cient, as it neglects the valuable information from source do-
main. Initially, due to domain shift, the differences between
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the source domain’s feature bank and the original normal fea-
tures of the target domain are significant, greatly impacting
the effectiveness of defect scoring. However, the preceding
domain perturbation and rectification modules align the tar-
get domain features generated by the model with the source
domain features, mitigating the effects of domain shift. This
alignment enhances the utility of the source domain bank for
comparative scoring in the target domain. To further capital-
ize on this, we propose a cross-domain scoring module.

For each image I from the target domain requiring infer-
ence, we denote its patch feature set as F = R(B(I)), from
which f is a specific patch feature. In the first step, the
patches to be inferred are incorporated alongside the source
and target domain banks to build the hypergraph H . To
separately leverage the similarity information from both the
source and target domains, the hypergraph matrix H is split.
The source domain subhypergraph Hs ∈ [0, 1]|F |×|Fs| pre-
serves the correlations between target features to be inferred
and source feature bank, while the target domain subhyper-
graph Ht ∈ [0, 1]|F |×|Ft| preserves correlations of query tar-
get features and target feature bank. Subsequently, a defect
score is assigned to each patch leveraging the subhypergraph
from the source domain Hs, and the maximum score among
all patches is taken as the image-level anomaly score:

f∗ = argmax
f∈F

max(Hs(f)), (12)

ψ(Hs, f) = max(Hs(f∗)), (13)
where max(·) returns the max element of a vector andHs(f)
is the row with f being the vertex in the subhypergraph matrix
in the source domain Hs. The pixel-wise anomaly map is
obtained by rearranging patch anomaly scores based on their
respective spatial positions:

ϕ(Hs, f) = {max(Hs(f))|f ∈ F}. (14)
The procedure is also adopted to assign anomaly score and

segmentation map with the target domain subhypergraph:
f∗ = argmax

f∈F
max(Ht(f)), (15)

ψ(Ht, f) = max(Ht(f∗)), (16)
ϕ(Ht, f) = {max(Ht(f))|f ∈ F}. (17)

The final image-wise anomaly score a and pixel-wise
anomaly map S are obtained by combining the results of mul-
tiple domains with a parameter β to balance the impact of
information from source and target domain:

a = βψ(Hs, f) + (1− β)ψ(Ht, f), (18)
S = βϕ(Hs, f) + (1− β)ϕ(Ht, f). (19)

To match the original input resolution, the final anomaly
map is upsampled using bilinear interpolation. Additionally,
a Gaussian function with a kernel width of σ = 4 is applied
to smooth the results.

3.3 Model Training
Benefiting from the above observation, we propose a two-
stage learning strategy to train the whole model. The first
stage will employ the domain perturbation loss Formula (7)
to optimize the domain adapter in DP. Then, the model switch
into the second stage with the domain rectification loss, i.e.,
Formula (11), to optimize the parameters in Res-HGNN. The
overall procedure is illustrated in Algorithm 1.

Algorithm 1 Optimization algorithm for HyperTrans
Input: Backbone B(·), domain perturbing module ω(·), nor-
mal samples from source domain Ns, few-shot normal sam-
ples from target domain Nt, original parameters in domain
adapter Θ, initialized parameters of Res-HGNN {Θ1,Θ2}
Parameters: epochsP, epochsR, ...
Output: Memory banks {Ms,Mt}, optimized parameters
{Θ,Θ1,Θ2}

1: while training do
2: for e = 1→ epochsP do
3: F ←− B(Ns), Fp ←− ω(F )
4: Θ

optim←−−−− Ldp(F, Fp)
5: end for
6: while constructing feature banks do
7: Fs ←− B(Ns), Ft ←− B(Nt)

8: Ms
store←−−− Fs, Mt

store←−−− Ft

9: end while
10: for e = 1→ epochsR do
11: F ←− B(Nt) ∪Ms,
12: Fr ←− R(B(F )), Fpse ←− S(F )
13: {Θ1,Θ2}

optim←−−−− Ldr(Fr, Fpse)
14: end for
15: end while

4 Experiments
4.1 Experimental Settings
Dataset: The MVTec-3D AD dataset [Bergmann et al.,
2021] is a standard 3D anomaly detection dataset, on which
our experiments are performed. It consists of 10 categories, a
total of 2656 training samples, and 1137 testing samples. The
3D scans were acquired by a high-resolution industrial 3D
sensor using structured light. Due to the scarcity of defective
samples, only normal samples are contained in the training set
of MVTec-3D AD, while the testing set contains both normal
and defective samples. The following experiments are carried
out on it, with RGB data as the source domain and the XYZ
data preprocessed into depth images to be the target domain.
Implementation Details: We implement HyperTrans us-
ing PyTorch2.4.0 and conduct evaluations on an NVIDIA
A100. The ViT base patch8 224 dino [Caron et al., 2021]
serves as the backbone. The domain perturbation module is
integrated into layers 3 to 10 of the backbone, employing Per-
lin noise with a mean of 0 and a standard deviation of 0.75 for
domain perturbations.1

Evaluation Metrics: Models are evaluated with ROCAUC
in image and pixel orientation (Receiver operating character-
istic - Area under the curve), which is a metric to evaluate the
performance of a classifier by calculating the area under the
ROC curve at various thresholds. The image-wise ROCAUC
evaluates the performance based on the classification of en-
tire images as defective or non-defective, while the pixel-wise
ROCAUC assesses the ability to correctly classify each indi-
vidual pixel as part of a defect or not. Initial values of other
parameters are listed in Table 2.

1https://github.com/raRn0y/HyperTrans

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/raRn0y/HyperTrans


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Task Type Method Backbone bagel cable gland carrot cookie dowel foam peach potato rope tire AVG1

Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.486 0.587 0.615 0.814 0.598 0.589 0.460 0.584 0.619 0.625 0.598
SIFT [Horwitz and Hoshen, 2023] SIFT 0.502 0.476 0.503 0.651 0.688 ➀ 0.574 0.553 0.536 0.580 0.541 0.560

Target AST [Rudolph et al., 2023] EfficientNet 0.642 0.598 0.693 0.821➁ 0.581 0.532 0.654 0.595 0.911➁ 0.531 0.656
1-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.665 0.613➀ 0.562 0.610 0.599 0.601➁ 0.531 0.603➁ 0.651 0.519 0.595

M3DM [Wang et al., 2023] ViT 0.754➁ 0.549 0.718➁ 0.582 0.64➁ 0.791➀ 0.772➁ 0.576 0.801 0.68➀ 0.686➁
HyperTrans ViT 0.816➀ 0.606➁ 0.957➀ 0.955➀ 0.463 0.569 0.926➀ 0.926➀ 0.921➀ 0.64➁ 0.778➀

Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.522 0.496 0.639 0.822 0.599 0.529 0.475 0.663➁ 0.662 0.584➁ 0.599
SIFT [Horwitz and Hoshen, 2023] SIFT 0.562 0.420 0.543 0.579 0.613➁ 0.634➁ 0.567 0.506 0.769 0.530 0.572

Target AST [Rudolph et al., 2023] EfficientNet 0.722 0.602 0.713 0.84➁ 0.548 0.505 0.676 0.570 0.909➀ 0.522 0.654
Img2 2-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.565 0.623➀ 0.575 0.531 0.568 0.551 0.567 0.521 0.624 0.567 0.569

M3DM [Wang et al., 2023] ViT 0.909➁ 0.607➁ 0.762➁ 0.626 0.683➀ 0.708➀ 0.809➁ 0.601 0.827 0.571 0.71➁
HyperTrans ViT 0.93➀ 0.581 0.965➀ 0.958➀ 0.551 0.489 0.962➀ 0.99➀ 0.909➀ 0.646➀ 0.798➀

Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.592 0.504 0.675 0.852➁ 0.675➁ 0.599 0.474 0.683 0.708 0.526 0.629
SIFT [Horwitz and Hoshen, 2023] SIFT 0.568 0.371 0.601 0.777 0.614 0.591 0.530 0.689➁ 0.607 0.528 0.588

Target AST [Rudolph et al., 2023] EfficientNet 0.739 0.519 0.639 0.764 0.455 0.556 0.601 0.658 0.863➁ 0.445 0.624
5-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.603 0.600 0.578 0.576 0.613 0.627➁ 0.599 0.600 0.672 0.602➁ 0.607

M3DM [Wang et al., 2023] ViT 0.921➀ 0.631➀ 0.781➁ 0.585 0.831➀ 0.704➀ 0.863➁ 0.579 0.801 0.512 0.721➁
HyperTrans ViT 0.92➁ 0.631➀ 0.998➀ 0.981➀ 0.604 0.621 0.954➀ 0.996➀ 0.904➀ 0.697➀ 0.831➀
Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.940 0.911 0.966 0.963➁ 0.938 0.744 0.951 0.958 0.962 0.597 0.893
SIFT [Horwitz and Hoshen, 2023] SIFT 0.969➁ 0.923➁ 0.988➁ 0.931 0.942 0.876➁ 0.974➁ 0.993➁ 0.971➁ 0.923➀ 0.949➁

Target AST [Rudolph et al., 2023] EfficientNet 0.929 0.516 0.925 0.628 0.543 0.556 0.684 0.853 0.910 0.590 0.713
1-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.441 0.498 0.868 0.705 0.747 0.573 0.657 0.906 0.362 0.567 0.632

M3DM [Wang et al., 2023] ViT 0.954 0.859 0.965 0.959 0.956➀ 0.826 0.959 0.913 0.967 0.247 0.861
HyperTrans ViT 0.984➀ 0.935➀ 0.997➀ 0.976➀ 0.954➁ 0.895➀ 0.995➀ 0.998➀ 0.992➀ 0.821➁ 0.955➀

Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.944 0.918 0.966 0.967➁ 0.913 0.752 0.957 0.960 0.966 0.497 0.884
SIFT [Horwitz and Hoshen, 2023] SIFT 0.973➁ 0.927➁ 0.99➁ 0.932 0.943 0.897➁ 0.972➁ 0.993➁ 0.978➁ 0.941➀ 0.955➁

Target AST [Rudolph et al., 2023] EfficientNet 0.940 0.507 0.925 0.639 0.539 0.564 0.678 0.863 0.929 0.522 0.711
Pix3 2-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.544 0.810 0.884 0.692 0.748 0.612 0.601 0.870 0.411 0.611 0.678

M3DM [Wang et al., 2023] ViT 0.960 0.840 0.965 0.962 0.956➁ 0.804 0.967 0.910 0.968 0.629 0.896
HyperTrans ViT 0.989➀ 0.937➀ 0.998➀ 0.984➀ 0.967➀ 0.901➀ 0.996➀ 0.999➀ 0.995➀ 0.834➁ 0.96➀

Depth iNet [Horwitz and Hoshen, 2023] ResNet 0.946 0.884 0.967 0.967➁ 0.944 0.747 0.959 0.958 0.971 0.561 0.890
SIFT [Horwitz and Hoshen, 2023] SIFT 0.974➁ 0.925➁ 0.993➁ 0.940 0.956➁ 0.89➁ 0.977➁ 0.995➁ 0.976➁ 0.931➀ 0.956➁

Target AST [Rudolph et al., 2023] EfficientNet 0.958 0.519 0.867 0.614 0.485 0.594 0.601 0.944 0.864 0.445 0.689
5-shot 3DSR [Zavrtanik et al., 2024] VQ-VAE 0.619 0.833 0.675 0.692 0.500 0.633 0.390 0.569 0.420 0.717 0.605

M3DM [Wang et al., 2023] ViT 0.962 0.770 0.968 0.960 0.959➀ 0.775 0.970 0.912 0.973 0.556 0.881
HyperTrans ViT 0.992➀ 0.935➀ 0.997➀ 0.98➀ 0.955 0.895➀ 0.996➀ 0.999➀ 0.993➀ 0.9➁ 0.964➀

Table 1: Comparison results of anomaly classification and anomaly segmentation on MVTec-3D AD dataset. The first place and second place
are marked. 1‘AVG’ is the average of all categories. 2‘Img’ stands for anomaly classification with image-wise ROCAUC being the evaluation
metric. 3‘Pix’ is short for anomaly segmentation with pixel-wise ROCAUC being the evaluation metric.

α β epochsP epochsR
0.3 0.6 3 100

Table 2: Parameter settings of HyperTrans in our experiments.

4.2 Comparision Experiments
Statistics: To verify the few-shot general anomaly detec-
tion performance, we compare HyperTrans with advanced
depth methods. The image-wise and pixel-wise ROCAUCs
are reported in Table 1. It can be concluded that source mod-
els generally have limited domain adaptability. When han-
dling tasks with domain shift, most methods suffer from great
accuracy loss, most of which come from the model design
targeting source characteristics and the deep fitting of net-
work to source data. With only a few depth samples (1, 2 and
5 samples for each classes) given, HyperTrans achieves the
SOTA depth-domain performance in the task of cross-domain
anomaly classification and segmentation. The advantage is
more significant on the primary metric of image-wise RO-
CAUC with an improvement of 13%, 12% and 15% on 1, 2
and 5 shot settings compared with the best non-cross-domain
methods. Tracing the image-wise results, HyperTrans im-
proves the distinguishability on anomaly samples and alle-
viates the issue of inter-class variance. From the pixel-wise
results, it enhances feature clarity and, through cross-domain
joint inference-making, mitigates the problem of IB.
Visualizations: Figure 3 shows intuitive examples of pre-
dicted segmentation maps. HyperTrans achieves the best seg-

Figure 3: Qualitative visualization of segmentation masks conducted
on MVTec3D AD under 1-shot setting. It compares HyperTrans
with baselines and illustrates the effectiveness of joint reasoning us-
ing source (-S) and target (-T) memory banks. AU-PRO scores in
the lower right reflect the localization accuracy of anomalies.

mentation, effectively addressing the issue of IB.

4.3 Parameter Analysis
To evaluate the impact of α (residual on hypergraph cross-
domain feature alignment), β (the influence of the source and
target domains during inference), and the cross-interaction
between feature alignment and inference, we conducted a se-
ries of parameter analysis experiments on the two parameters.
The results are shown in Figure 4. As α increases, the cross-
domain enhancement component increases, while the resid-
ual component decreases. From Figure 4 (Left), it can be
seen that due to the fitting of HDR module on the source do-
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Figure 4: Parameter analysis of HyperTrans. The impact of α on the
results for source and target domains (Left) and the cross impact of
α and β (Right). The results are the average image-wise ROCAUC
among all categories on MVTec-3D AD.

DP HDR CDS I-ROCAUC

✗ ✗ ✗ 0.813 ± 0.203
✓ ✗ ✗ 0.817 ± 0.257
✗ ✓ ✗ 0.826 ± 0.217
✗ ✗ ✓ 0.817 ± 0.233
✓ ✓ ✓ 0.831 ± 0.158

Table 3: Ablation study results of the proposed modules. ‘DP’ is
short for domain perturbation. ‘HDR’ represents for hypergraph
domain rectification. ‘CDS’ represents cross-domain scoring. ‘I-
ROCAUC’ is the average image-wise ROCAUC of all classes on
MVTec3D AD in terms of mean ± standard deviation.

main, the results relying on source domain patterns show an
increase in fluctuations, while the results on the target domain
gradually decrease. Therefore it’s necessary to introduce β to
balance the weight of source and target domain for inference
and study the cross impact of α and β. From Figure 4 (Right),
it can be concluded that HyperTrans achieves the best aver-
age ROCAUC on the test set when α = 0.3, β = 0.6 and the
introduction of both components is essential.

4.4 Ablation Studies
Impact of Each Modules: To measure the impact of each
losses on the results and the effectiveness of each component
in the framework, we conduct an ablation analysis with re-
sults shown in Table 3. We observe a consistent performance
improvement with the introduction of each proposed mod-
ules, and the combination of them improves the averaged re-
sults by 0.018. This improvement is attributed to the effec-
tiveness of cross-domain alignment, which not only mitigates
the issues highlighted in Figure 1 but also brings the source
and target domain patches closer. This proximity enhances
the utility of the source domain bank, further improving the
inference performance of the CDS mechanism.

Impact of Domain Perturbation: The DP module aims to
simulate samples from various domains with channel statis-
tic noise injection, guiding the model to adapt to non-existent
domain styles in advance. t-SNE [Van der Maaten and Hin-
ton, 2008] in Figure 5 shows that the perturbed features, after
undergoing correction through this module, become closer to
the original ones, demonstrating its effectiveness.

Figure 5: t-SNE on the features before (Left) and after (Right)
Domain Perturbing. All features are generated from bagel on
MVTec3D AD. ‘L2 Distance’ is the average Euclidean Distance be-
tween the adapted features and original features. ‘Cosine Similarity’
computes the average cosine similarity between the two.

Figure 6: PCA on the features before Hypergraph Domain Recti-
fication (Left) and features after Hypergraph Domain Rectification
(Right). All features are generated from bagel on MVTec3D AD.

Impact of Hypergraph Domain Rectification: The HDR
module provides a global correction across domains. We vi-
sualize its impact with PCA [Jolliffe and Cadima, 2016] in
Figure 6. Comparing the distributions of the original patches
with those of the HDR-enhanced patches, the representation
spaces of the source and target samples become closer and
the features are more aligned. This reduces the domain shift
and enhances the utility of source bank during inference.

5 Summary
In this paper, we pioneer the exploration of cross-domain
learning in image anomaly detection and introduce CD-
FSAD, a task designed to enable the effective transfer of
knowledge for anomaly detection in few-shot learning sce-
narios. A novel perturbation-rectification-scoring solution
named HyperTrans is then developed. The domain pertur-
bation module simulates target domain styles using statisti-
cal Perlin noise, while the domain rectification module em-
ploys hypergraphs to capture higher-order cross-domain fea-
ture correlations, integrating residual hypergraph convolu-
tion and pseudo-feature generation for alignment. During
inference, a cross-domain scoring method jointly leverag-
ing multi-domain subhypergraph similarity information for
multi-level anomaly reasoning. Extensive experiments val-
idate that HyperTrans achieves SOTA performance, signifi-
cantly outperforming non-cross-domain methods in classifi-
cation and segmentation tasks, and providing a scalable, effi-
cient and universal solution for image anomaly detection.
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