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Abstract
Image sentiment recognition (ISR) facilitates the
practical application of affective computing on
rapidly growing social platforms. Nowadays,
region-based ISR methods that use affective re-
gions to guide emotion prediction have gained sig-
nificant attention. However, existing methods lack
a causality-based mechanism to guide affective re-
gion generation and effective tools to quantitatively
evaluate their quality. Inspired by the psycholog-
ical theory of Emotion Regulation, we propose a
counterfactual thinking driven emotion regulation
network (CTERNet), which simulates the Emotion
Regulation Theory by modeling the entire process
of ISR based on human causality-driven mecha-
nisms. Specifically, we first use multi-scale per-
ception for feature extraction to simulate the stage
of situation selection. Next, we combine situa-
tion modification, attentional deployment, and cog-
nitive change into a counterfactual thinking based
cognitive reappraisal module, which learns both af-
fective regions (factual) and other potential affec-
tive regions (counterfactual). In the response mod-
ulation stage, we compare the factual and counter-
factual outcomes to encourage the network to dis-
cover the most emotionally representative regions,
thereby quantifying the quality of affective regions
for ISR tasks. Experimental results demonstrate
that our method outperforms or matches the state-
of-the-art approaches, proving its effectiveness in
addressing the key challenges of region-based ISR.

1 Introduction
Emotion is a state that individuals constantly evoke and ex-
perience [Cui et al., 2023]. With the continuous develop-
ment of social communication channels, vast amounts of vi-
sual information, particularly images, now flood social me-
dia platforms. Image Sentiment Recognition (ISR) focuses

∗Corresponding Author

on detecting and classifying the emotions conveyed by im-
ages through visual analysis. On a personal level, ISR can
play a crucial role in identifying early signs of mental health
issues, such as depression and anxiety, enabling timely inter-
vention [She et al., 2019]. On a commercial level, ISR can
analyze users’ emotional states and their fluctuations on so-
cial media, helping platforms enhance user experience, iden-
tify social trends, and track emerging hot topics [Wang et al.,
2020]. As a result, ISR has found widespread applications
across diverse fields, including education [Tan et al., 2023]
and opinion mining [Li et al., 2019].

Traditional ISR methods rely on handcrafted features to
identify the emotions conveyed by images. With the develop-
ment of the ISR field, these methods can be broadly catego-
rized into image-level and region-based approaches. Image-
level methods employ convolutional neural networks to an-
alyze an entire image and determine its predominant emo-
tion [You et al., 2015]. In contrast, region-based methods fo-
cus on specific affective regions within an image, which are
critical for evoking emotional responses [Zhang et al., 2022b;
She et al., 2019; Zhang et al., 2024]. As a result, region-based
ISR has emerged as a primary area of research interest. How-
ever, these methods face two significant challenges:

First, current ISR methods rely on correlation-based learn-
ing [You et al., 2016; Zhang et al., 2023], focusing on sta-
tistical associations rather than causal relationships. This re-
liance often results in overfitting to dataset biases or spurious
correlations, ultimately limiting the model’s ability to accu-
rately identify regions that genuinely evoke emotions [Rao
et al., 2021]. To address these limitations, some researchers
have attempted to model the innate causality mechanisms
of humans [Zhang et al., 2024; Yang et al., 2023a]. These
causality mechanisms enable humans to naturally mitigate
emotional content biases, allowing fair emotional judgments
despite visual biases [Yang et al., 2024]. For example,
flowers are often perceived as positive imagery [You et al.,
2016], yet this perception is not solely based on their vi-
sual features but also influenced by causal reasoning rooted
in personal experiences and cultural context. Despite cul-
tural differences, humans consistently interpret emotions in
visual content by leveraging these experiences and contexts,
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resonating with familiar symbols and associations through
well-developed causal reasoning processes [You et al., 2015;
Sun et al., 2022]. Secondly, the lack of effective tools to eval-
uate affective regions often causes models to focus on irrele-
vant attributes. For instance, if “joy” samples frequently in-
clude a table, the model might associate the table with joy.
Region-based methods address this using additional annota-
tions (e.g., bounding boxes) [Yang et al., 2018b], yet this ap-
proach is labor-intensive and difficult to scale.

Therefore, we integrate the innate counterfactual thinking
ability of humans to adjust predictions more effectively. This
approach mimics the natural human emotion judgment pro-
cess, driven by causality, within an ISR model. According
to Gross’s Emotion Regulation Theory, emotion regulation
involves processes that influence the occurrence, experience,
and expression of emotions [Gross, 2015]. These processes
are categorized into five stages: situation selection, situa-
tion modification, attentional deployment, cognitive change,
and response modulation [Gross, 2002]. Inspired by this, we
build a Counterfactual Thinking driven Emotion Regulation
Network (CTERNet) for the ISR task, which aims to simulate
the Emotion Regulation process of humans by re-evaluating
the scenarios of emotional stimuli to change the meaning of
the outcomes. The CTERNet is employed with a response-
focused strategy [Gross, 2002] in Emotion Regulation, where
the adjustment occurs after the emotion has already been gen-
erated and the emotional response has been activated. The
response-focused strategy aligns well with how humans ex-
perience emotions when observing an image. For instance,
as shown in Figure 1(a), when people notice the rose (Area
1) in a picture and interpret the emotion conveyed as “joy”,
they might then reflect due to the nature of cognitive load
and attention [Sweller, 2020]: What if I do not notice the
Area 1 in the image? That is, after obtaining a prediction, hu-
mans will reflect through counterfactual thinking [Rao et al.,
2021], which can re-examine the problem to ensure that no
important information has been overlooked and to obtain the
correct emotion prediction.

Specifically, we first utilize a multi-scale perception net-
work to extract features from images, simulating various situ-
ation selections. Next, we integrate counterfactual thinking to
combine situation modification, attentional deployment, and
cognitive change into a counterfactual-thinking-based cogni-
tive reappraisal module (C2RM). To clarify the causal rela-
tionships between affective regions and emotional predictions
within the counterfactual framework, we build a structural
causal graph In C2RM, we simulate human emotional arousal
under different situations by learning affective regions (fac-
tual) and exploring alternative potential regions (counterfac-
tual). During the response modulation stage, emotional pre-
dictions are obtained by comparing the impacts of factual and
counterfactual regions. This approach enables context-aware
predictions and evaluates the quality of identified affective
regions. To focus on emotionally representative regions and
minimize biased sentimental cues, we apply the total effect
(TE) [Pearl, 2014; Yang et al., 2024].

The main contributions are summarized as follows:

• We propose CTERNet, a novel method based on Emo-

tion Regulation Theory, for ISR through total effect
analysis. This method equips machines with the ability
to compare factual and counterfactual outcomes based
on causality.

• We construct counterfactual thinking based cognitive
reappraisal module (C2RM) as the core component of
CTERNet, simulating human emotional arousal across
various situations.

• We utilize structural causal graphs to reformulate
CTERNet, revealing the ISR process from image input
to prediction, identifying irrelevant attributes, and intu-
itively providing counterfactual thinking interventions.

2 Related Work
2.1 Region-based Image Sentiment Recognition
Region-based ISR methods aim to identify specific areas
within an image that strongly convey emotions [Yang et al.,
2018a]. Existing approaches mainly follow two strategies.
The first is precise annotation-based methods (e.g., bounding
boxes and segmentation masks) [Zhang et al., 2022b], which
require additional prior knowledge, such as generating pro-
posals to locate bounding boxes. However, these methods are
time-consuming and labor-intensive compared to image-level
annotations [Zhang et al., 2023]. Additionally, they often re-
tain proposals focused on foreground objects after processing
through a localization regressor, potentially leading to infor-
mation loss during emotional analysis [She et al., 2019]. To
address these issues, a mainstream weakly-supervised strat-
egy has emerged, offering soft proposals for evoking emo-
tions. This strategy identifies attention-grabbing regions re-
lated to human visual attention, leveraging visual saliency in
weakly-supervised ISR [You et al., 2017; Fan et al., 2017;
He et al., 2019; Zhang et al., 2024].

2.2 Counterfactual in Emotion Regulation
In psychology, Emotion Regulation involves managing emo-
tions through planned efforts. Despite varying definitions
[Thompson, 1994; Feldner et al., 2003; Gross, 2015; Cludius
et al., 2020], Gross’s process model is widely accepted
[Gross, 2002; Gross and Feldman Barrett, 2011], distinguish-
ing between antecedent-focused and response-focused strate-
gies. Cognitive reappraisal, a form of cognitive change, al-
ters perceptions of emotional events by hypothesizing differ-
ent outcomes [McRae et al., 2012; Theodorou et al., 2023],
essentially using counterfactual thinking [Rye et al., 2008;
Sirois et al., 2010; Parikh et al., 2022]. This involves eval-
uating past events to predict, reason, and attribute causality.
Some studies suggest a causal relationship between emotion
and counterfactual thinking during cognitive reappraisal, aid-
ing adaptation to social and environmental needs.

3 Methodology
Emotion Regulation Theory, as illustrated in Figure 1(a),
delves into the traditional understanding of emotions or sen-
timents, suggesting that our emotional experiences are part of
a broader causal chain [Zhang et al., 2024; Coëgnarts and
Kravanja, 2016; Gross, 2015], which lay the foundation for
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(b2) SMAD Counterfactual Thinking (SMAD-C)

(b1) SMAD Factual Thinking (SMAD-F)
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(b0) Feature Extractor

(a) Five Stages of Emotion Regulation Theory

(b) Proposed Counterfactual Thinking driven Emotion Regulation Network (CTERNet)

(c) Structure Causal Graph

一 一

一

Figure 1: The Framework of the proposed CTERNet. (a) Five Stages of Emotion Regulation Theory: These stages include situation selection,
situation modification, attentional deployment, cognitive change, and response modulation. (b) The Proposed CTERNet: The Proposed
CTERNet simulates the four stages of Emotion Regulation Theory. The final output of the CTERNet system, YTE , can be obtained through
response modulation (b3), which involves adding the factual prediction (from SMAD-F) and its counterfactual prediction (from SMAD-C).
(c) Structural Causal Graph: We built this Structural Causal Graph, which corresponds to the proposed CTERNet (Figure 1 (b)).

the proposed method in this proposal. According to Emo-
tion Regulation [Gross, 2002; Pearl and Mackenzie, 2018;
Rao et al., 2021; Pearl, 2022], as shown in Figure 1(a), there
are five stages including situation selection (Figure 1(a0)),
situation modification and attentional deployment (Figure
1(a1)), cognitive change (Figure 1(a2)), and response modu-
lation (Figure 1(a3)). To better simulate the Emotion Regula-
tion process (illustrated in Figure 1(a)) within Emotion Reg-
ulation Theory, we propose a novel counterfactual thinking
driven emotion regulation network (CTERNet) for identify-
ing emotional or sentiment categories, such as positive, neg-
ative, and their respective subcategories. The outputs (binary
or multiclass) depend on the corresponding datasets available
and the requirements.

The proposed CTERNet simulates the five stages of Emo-
tion Regulation Theory. Feature extractor, as shown in
block (b0) in Figure 1(b) simulates situation selection as
shown in Figure 1(a0). The pairs: SMAD-F (Figure 1 b1))
and SMAD-C (Figure 1(b2)) are the core components of
the CTERNet, which simulate various emotional arousal pro-
cesses, such as SMAD factual thinking (a1) and SMAD
counterfactual thinking (a2) in Emotion Regulation Theory.
The effects of SMAD-F (factual thinking), depicted in block

(b1), are compared with those of SMAD-C (counterfactual
thinking), illustrated in block (Figure 1(b2)), before conduct-
ing response modulation (Figure 1(a3)). The final output
of the CTERNet, YTE , can be obtained through response
modulation (a3), which involves adding the factual predic-
tion (from SMAD-F) and its counterfactual prediction (from
SMAD-C).

We built this Structural Causal Graph [Pearl and oth-
ers, 2000; Pearl, 2014], which corresponds to the proposed
CTERNet (Figure 1(c)). By introducing such a structural
causal graph, we aim to simplify the proposed method to en-
able the novice to understand the relationship between differ-
ent variables, I , X , S, S∗, Ys,x(I) and Y ′

s∗,x(I). I represent
input images, X represents the extracted features, S repre-
sents pseudo sentiment maps obtained by module SMAD-F
(Figure 1(b1)) (also illustrated as (Figure 1(c1)), S∗ repre-
sents pseudo sentiment maps obtained by module SMAD-C
(Figure 1(b2)) (also illustrated as Figure 1(c2)), Ys,x(I) rep-
resents the final emotion response prediction output by mod-
ule SMAD-F (Figure 1(b1)) (also illustrated as Figure 1(c1)),
and Y ′

s∗,x represents the final emotion response prediction
output by module SMAD-C (Figure 1(b2)) (also illustrated
as Figure 1(c2)). The link I → X → S represents the extrac-
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tion of features X from I through the corresponding encoder
in the ISR model, followed by the generation of pseudo sen-
timent maps S. The link I → (X,S) → Y signifies the final
emotion classification prediction obtained by integrating fea-
tures X and sentiment regions S, capturing the causal effect
of X on the model’s prediction Y .

3.1 Feature Extractor (b0)
Feature extractor (Figure 1(b0)) simulates the situation se-
lection (Figure 1(a0)) of the Emotion Regulation Theory. By
processing and analyzing the visual information, individuals
can assess the emotional impact of the current context and
make appropriate choices [Gross and Feldman Barrett, 2011;
Gross, 2015]. In Emotion Regulation Theory, situation se-
lection (Figure 1(a0)) refers to the process of regulating emo-
tions by choosing to engage with or avoid certain emotional
situations (such as Area 1, Area 2, in Figure 1(a)). There-
fore, I → X as a feature extraction process (Figure 1(b0))
naturally aligns with the situation selection stage in Emotion
Regulation Theory. By selecting specific emotion scenarios
(i.e., avoiding certain scenarios) [Gross and John, 2003], hu-
mans can achieve the goal of emotional regulation. To simu-
late the different emotional scenarios directed by various vi-
sual inputs, we utilize Res2Net-101 [Gao et al., 2019] as the
backbone for the I → X process.

3.2 Situation Modification and Attentional
Deployment Factual Thinking (SMAD-F) (b1)

After selecting a scenario through situation selection (Figure
1(a0)), the corresponding module for the proposed CTER-
Net is Feature Extractor shown in Figure 1(b0). This sce-
nario is then modified to obtain and modify the emotional
impact, which is known as situation modification and atten-
tional deployment (SMAD) factual thinking (Figure 1(a1)).
For example, suppose we choose the emotional scenario in
Area 1 from Figure 1(a). In that case, we can generate dif-
ferent situations (e.g., different features including low-level
features and high-level features) based on the Area 1. The
corresponding module for the proposed CTERNet is SMAD-
F as shown in Figure 1(b1). As shown in block (b1) of Figure
1, this preliminary control of emotional scenarios is simu-
lated using different multi-scale convolutional filters, similar
to the way situation modification work in the human emotion
perception process. The process can be represented by the
following equation.

Sin =
G∑

g=1

Conv(KSg ×KSg, Xg) (1)

where g ∈ G represents dividing X into g groups based on
the number of channels. For each group, we use convolu-
tional filters with a kernel size (KS), KS = 2g+1 for emotion
perception. Following the practice in [Zhang et al., 2022a],
we set g to 4.

The situations in situation modification have different as-
pects [Gross, 2002], therefore, we concatenate the out-
puts from different emotional scenario perceptions along the
channel dimension as the input of attentional deployment.
Through attentional deployment, we can select the specific

situation aspect to focus on. To mimic the attentional de-
ployment stage, we reshape the feature map Sin to a size of
C × (W × H). We then multiply the reshaped feature map
by the transpose of Sin, and after normalization, we obtain
a feature map Sout of size C × C. Next, Sout is multiplied
by the transpose of Sin, and the result is reshaped back to
C ×W ×H with a learnable parameter φ, which is shown in
Equation below.

Sout =
C∑

j=1

(φ
C∑
i=1

(Sij × (Sin)i) + (Sin)j) (2)

where Sij represents the dependency between the i-th and j-
th channels, defined as exp((Sin)i·(Sin)j)∑C

i=1 exp((Sin)i·(Sin)j)
. This process

simulates the operation of attentional deployment, helping
CTERNet focus on the most discriminative and important re-
gions of the image.

3.3 Situation Modification and Attentional
Deployment Counterfactual Thinking
(SMAD-C) (b2)

SMAD-C component (in Figure 1(b2)), also known as cogni-
tive change as shown in Figure 1(a2), in Emotion Regulation
Theory, involves selecting potential interpretations of the sig-
nificance of emotional events. Based on the counterfactual
thinking strategy in Emotion Regulation Theory [Parikh et
al., 2022], we consider: if the model sees other potential af-
fective regions (e.g., Area 2), what would the prediction be?
By learning from both the affective regions identified by the
SMAD-F module (factual) (see Figure 1(b1)) and other po-
tential affective regions identified by the SMAD-C module
(counterfactual) (see Figure 1(b2)), we enhance the effective-
ness of the ISR, which consider the SMAD-F only rather than
the pairs (both SMAD-F and SMAD-C). This approach helps
extract more robust emotional features. The causal relation-
ships in the proposed method can be expressed as following:

Ys,x(I) = Y (S = s,X = x | I) (3)

Ys,x(I) contains confusing emotional guidance information.
By assuming different variables, counterfactual interventions
can be achieved [Pearl and Mackenzie, 2018; Pearl, 2022].
By introducing a structural causal graph, we can directly ma-
nipulate the values of several variables to analyze causal re-
lationships and observe their effects [VanderWeele, 2015;
Rao et al., 2021]. In the ISR tasks, we conduct counterfactual
intervention do(S = s∗) as potential conditions [Vander-
Weele, 2015] for the affective region (s∗) (counterfactual) to
replace the affective region map (S) (factual), as illustrated
in the potential generation for SMAD-C in block (b3) of Fig-
ure 1(b), and in the block (c2) of Figure 1(c). In practice, we
use random attention allocation, uniform attention allocation,
and reverse attention allocation as counterfactuals [Rao et al.,
2021]. Subsequently, response modulation affects human
emotional perception outcomes after the emotional response
tendencies have already been elicited. To simulate this stage,
we leverage the cross-spatial pooling strategy, dividing the
input feature map’s channels into multiple categories, which
is shown as Equation (4). For each classification category cl,
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Methods FI Emotion6
SentiBank [Borth et al., 2013] 49.23 35.24
DeepSentiBank [Chen et al., 2014] 51.52 42.53
MAP [He et al., 2019] 68.13 60.47
WSCNet [She et al., 2019] 70.07 58.25
MSRCA [Zhang et al., 2022b] 72.60 55.60
Yang et al. [Yang et al., 2023b] 71.13 60.54
DCNet [Zhang et al., 2023] 71.65 59.60
CausVSR [Zhang et al., 2024] 72.57 59.82
CTERNet 72.71 60.49

Table 1: Accuracy comparison on multi-class datasets. The highest
accuracy model is indicated in bold black, and the second-best is
indicated in bold blue.

the feature maps Sout,i (i = 1, 2, . . . , l) have all pixels in
each channel averaged by the global average pooling opera-
tion (GGAP ), thereby achieving dimensionality reduction and
information aggregation of the input feature map to produce
the final output S = fcs(Sout).

fcs =

CL∑
cl=1

(
1

l

l∑
i=1

GGAP (Sout,i)

)(
1

l

l∑
i=1

fcl,i

)
(4)

As shown in the structural causal graph, we combine the
pseudo sentiment maps S and X for the final prediction P :

P = ffully(GGAP(t(S,X))) (5)

where t(·) represents the concatenate operation, and ffully
represents the fully connected layer, used to calculate the pre-
diction scores for different emotional categories. The effect
of learned Emotion Regulation on actual emotion prediction
can be represented by the addition or sum of the factual think-
ing prediction, Y (from SMAD-F) and its counterfactual pre-
diction Y ′ (from SMAD-C).

3.4 Response Modulation (b3)
The total effect (TE) [Pearl, 2014; Yang et al., 2024], YTE ,
which is the final emotion response of the CTERNet can be
obtained using the following equation:

YTE = E[Y (S = s,X = x|I)− Y (S = s∗, X = x|I)] (6)

We utilize YTE as a supervision signal to guide the gener-
ation of affective regions. In combination with the original
losses in region-based ISR, the total loss function can be ex-
pressed as shown in Equation (7).

LTotal = L(S, Ylabel) + L(YTE , Ylabel) (7)
where L(·) represents cross-entropy loss, and Ylabel denotes
the ground truth. The loss L(S, Ylabel) calculates the differ-
ence between the generated affective regions S and the true
emotion labels.

4 Experiments
4.1 Datasets and the Evaluation Metric
The experiments were conducted on datasets of various
scales, including Flickr and Instagram (FI) [You et al., 2016],

Figure 2: Confusion matrix for the FI dataset with eight emotions.

Figure 3: Confusion matrix for the Emotion6 dataset with six emo-
tions.

Emotion6 [Peng et al., 2016], ArtPhoto [Machajdik and
Hanbury, 2010; Yang et al., 2018b], and Twitter II [Borth
et al., 2013; Zhang et al., 2024].

Like all other ISR works, we utilize classification accuracy
for evaluation.

4.2 Implementation Details
In terms of model architecture, we utilized a Res2Net-101
[Gao et al., 2019] pre-trained on the ImageNet dataset, im-
plemented using the PyTorch framework, to parameterize the
feature extraction network. The output of the last linear layer
was replaced to generate the task-specific number of neurons
for ISR prediction. For dataset processing, we set the input
image size to 448×448. Data augmentation on the training set
included random cropping, random horizontal flipping, and
image normalization. For the test set, we applied center crop-
ping and image normalization. We used the SGD optimizer
with a learning rate of 0.0001 and a momentum of 0.9. The
learning rate was decayed by a factor of 0.1 every 10 epochs.
All experiments were implemented on NVIDIA Geforce RTX
2080 Ti GPUs.
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Methods FI Emotion6 ArtPhoto Twitter II
SentiBank [Borth et al., 2013] 56.47 - 67.74 65.93
DeepSentiBank [Chen et al., 2014] 64.39 - 68.73 70.23
PCNN [You et al., 2015] 75.34 - 70.84 77.68
Zhu et al. [Zhu et al., 2017] 84.26 - 75.5 -
Panda et al. [Panda et al., 2018] 84.81 77.72 - -
Yang et al. [Yang et al., 2018b] 86.35 81.26 74.8 80.48
WSCNet [She et al., 2019] - - - 81.35
MSRCA [Zhang et al., 2022b] 87.40 83.00 - -
DCNet [Zhang et al., 2023] 90.58 83.26 79.13 82.50
CausVSR [Zhang et al., 2024] 90.93 83.30 78.98 82.86
CTERNet 91.01 83.67 79.27 83.33

Table 2: Accuracy comparison on binary-class datasets. The highest accuracy model is indicated in bold black, and the second-best is
indicated in bold blue.

Vanilla Model SMAD-F SMAD-C FI Emotion6 ArtPhoto TwitterII
✓ 71.45 58.95 76.72 82.07
✓ ✓ 72.31 60.06 78.84 82.96
✓ ✓ ✓ 72.71 60.49 79.27 83.33

Table 3: Impacts of the CTERNet Framework Structure.

4.3 Comparisons on Multi-class Datasets

We compared the CTERNet with classic and state-of-the-art
ISR models on multi-class datasets, as shown in Table 1.
WSCNet is a classic weakly-supervised ISR method that has
inspired much work in the field [She et al., 2019]. Yang’s
model uses a semantic embedding space to explore image-
emotion relationships [Yang et al., 2023b]. MSRCA in-
troduces a multi-level sentiment region correlation analysis
module and leverages a Transformer encoder for rich emo-
tion interaction [Zhang et al., 2022b]. CausVSR models
ISR based on Emotion Regulation Theory, using a front-
door adjustment to reduce contextual confounding [Zhang et
al., 2024]. Compared to these models, CTERNet achieved
the highest accuracy on the FI dataset (72.71%), outper-
forming MSRCA and CausVSR by 0.11% and 0.14%, re-
spectively. On the Emotion6 dataset, it performed well
(60.49%), slightly behind Yang’s model (60.54%), which em-
ploys multi-task learning and a fusion strategy to better utilize
limited samples in smaller datasets. In contrast, CTERNet
emphasizes causal relationships through Emotion Regulation
strategies and counterfactual thinking, making it more effec-
tive on complex, larger-scale datasets by leveraging more in-
formation for causal analysis.

Furthermore, we present the confusion matrices for the FI
and Emotion6 multi-class datasets in Figure 2 and Figure 3
to analyze the performance of CTERNet. The matrices show
that the model performs well in recognizing most emotions
on both datasets. In the FI dataset, significant misclassifi-
cations occur between similar emotions, such as Anger and
Disgust, and Excitement and Awe, with Disgust being the
hardest to recognize. This may be due to the greater diver-
sity in how Disgust is expressed across contexts, making it
more challenging for the model. In the Emotion6 dataset,
overall performance is strong, but Anger shows lower ac-

curacy, with misclassifications primarily between Anger and
Sadness. This could be due to visual similarities, as train-
ing samples for both emotions often feature black-and-white
images with dark tones.

4.4 Comparisons on Binary-class Datasets
We also conducted experiments focused on sentiment polar-
ity analysis. Besides the ArtPhoto and Twitter II datasets,
which inherently include sentiment polarity classification, we
converted the original labels of Emotion6 and FI into two po-
larities: positive and negative. As shown in Table 2, CTER-
Net demonstrated excellent performance across all polarity
datasets, showcasing its robust capabilities in polarity senti-
ment classification tasks. In comparison, while other methods
performed well on certain datasets, none surpassed the over-
all performance of CTERNet.

4.5 Ablation Studies
By systematically conducting ablation studies on components
of the CTERNet model that simulate Emotion Regulation
Theory, we observe the impact of each module on the overall
performance. These studies are conducted on the multi-class
datasets and the binary classification datasets.
Impacts of the CTERNet Framework Structure. Table 3
presents the ablation study results for each regulation process
within the CTERNet framework: i) The significant perfor-
mance improvement when incorporating the SMAD-F mod-
ule into the vanilla model indicates that our simulation of situ-
ation modification and attention allocation provides valuable
emotional semantics, effectively aiding CTERNet in contin-
uously identifying and adjusting affective regions. ii) Adding
the SMAD-C module, based on counterfactual thinking, fur-
ther enhances the results. Comparing facts with counterfac-
tual assumptions helps reduce bias in the affective region gen-
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Potential Generation Used in SMAD-C FI Emotion6 ArtPhoto TwitterII
Vanilla Model 72.31 60.06 78.84 82.96
Uniform Attention Allocation 72.58 60.24 79.12 83.20
Reverse Attention Allocation 72.36 60.11 78.88 82.84
Random Attention Allocation 72.71 60.49 79.27 83.33

Table 4: Impacts of Leveraging Different Potential Generation in SMAD-C.

Figure 4: Comparison of visualization of affective regions on Emo-
tion6 dataset. The 1st column shows the original input images,
the 2nd column displays the class activation maps generated us-
ing [Zhou et al., 2016], the 3rd column presents the saliency maps
produced by [Chen et al., 2020], the 4th column illustrates the affec-
tive region maps generated by DCNet [Zhang et al., 2023], and the
5th column depicts the results of CTERNet.

eration process. Additionally, this demonstrates that the total
causal effect is essential for improving de-biasing gains.
Impacts of the Potential Generation in SMAD-C. We ap-
plied three different strategies [Rao et al., 2021], including
random attention allocation, uniform attention allocation, and
reverse attention allocation, to the attention allocation phase
of Emotion Regulation as counterfactual scenarios. The re-
sults, shown in Table 4, indicate that random attention allo-
cation outperforms the other strategies. However, the per-
formance of reverse attention allocation is suboptimal, even
falling below the vanilla model’s performance on the Art-
Photo and TwitterII datasets. We analyzed that the random
attention allocation strategy can provide diverse attention pat-
terns in different contexts, capturing more emotional infor-
mation and contextual variations. This diversity aligns bet-
ter with natural human attention, helping the model to more
comprehensively understand and regulate emotions. In con-
trast, the reverse attention allocation strategy may disrupt the
organization and expression of emotional features, leading to
reduced focus on key emotional characteristics and thereby
weakening the model’s ability to regulate emotions.

4.6 Visualization
We conducted a visual analysis on Emotion6 using different
affective region generation methods. CAM model [Zhou

et al., 2016] can highlight the regions of the image that the
model focuses on when making classification decisions. Sim-
ilarly, saliency object detection method of Chen et al. [Chen
et al., 2020] can identify the most prominent areas in an im-
age, which are the parts most likely to attract human attention
first. However, the ISR task differs from ordinary image clas-
sification tasks. ISR not only focuses on objects in the im-
age but also involves more abstract and complex features that
guide its decisions. As shown in Figure 4, CTERNet exhibits
more precise targeting when the image content is simple and
features a single main subject (e.g., the first and third rows).
In the first row, while all tested models detect relevant af-
fective regions, CTERNet considers both the foreground toad
and the background environment. Similarly, in the third row,
CTERNet captures both the person and the seaside environ-
ment, unlike the saliency-based method, which focuses only
on the foreground object. Additionally, CTERNet avoids the
interference in the upper affective region generated by DC-
Net, providing more accurate delineation of affective regions.
For more complex images with multiple targets or lower con-
trast (e.g., the second, fourth, and fifth rows), the saliency-
based method struggles to identify significant regions accu-
rately. In contrast, CTERNet not only detects clear affec-
tive regions but also identifies finer details compared to other
models. This highlights CTERNet’s superior ability to handle
complex scenarios, making it highly effective for ISR tasks.

5 Conclusion

This paper simulates the Emotion Regulation Theory by mod-
eling the entire process of image sentiment recognition based
on human causality-driven mechanisms. Specifically, we fo-
cus on counterfactual thinking as a crucial strategy in cog-
nitive change. By leveraging counterfactual causal relation-
ships, we jointly model the stages of situation modifica-
tion, attentional deployment, and cognitive change in Emo-
tion Regulation Theory. This approach allows us to learn
both affective regions (factual) and other potential affective
regions (counterfactual), simulating humans’ diverse emo-
tional arousal processes in different situations. During the re-
sponse modulation phase, we obtain emotional prediction re-
sults based on interpreting various emotional scenarios, com-
paring the effects of factual and counterfactual information
on the final emotional prediction. This process also quantifies
the quality of the affective regions. Extensive experiments on
public image sentiment recognition datasets demonstrate the
performance of the proposed model.
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