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Abstract
Multimodal emotion recognition aims to identify
emotions by integrating multimodal features de-
rived from spoken utterances. However, existing
work often neglects the calibration of conversa-
tional entities, focusing mainly on extracting po-
tential intra- or cross-modal information. This
leads to the underutilization of utterance infor-
mation that is essential for accurately character-
izing emotion. Additionally, the lack of effec-
tive modeling of conversational patterns limits the
ability to capture emotional pathways across con-
texts, modalities and speakers, impacting the over-
all emotional understanding. In this study, we
propose the modality-calibrated hypergraph fusion
network (MATCH), which leverages multimodal
fusion and hypergraph learning techniques to ad-
dress these challenges. In particular, we introduce
an entity calibration strategy that refines the rep-
resentations of conversational entities both at the
modality and context levels, allowing for deeper
insights into emotion-related cues. Furthermore,
we present an emotion-aligned hypergraph fusion
method that incorporates a line graph to explore
conversational patterns, facilitating flexible knowl-
edge transfer across modalities through hyperedge-
level and graph-level alignments. Experiments
demonstrate that MATCH outperforms state-of-
the-art approaches on two benchmark datasets.

1 Introduction
Emotion recognition in conversations (ERC) aims to detect
emotional states from conversational signals, providing cru-

∗Corresponding Author (mingli@zjnu.edu.cn)

cial emotional cues for downstream tasks. ERC has attracted
significant attention in fields such as social recommenda-
tion [Zhang et al., 2024], fake news detection [Mittal et al.,
2020], and dialogue systems [Bertero et al., 2016]. Early
ERC approaches primarily focused on text-based inputs, uti-
lizing techniques like recurrent neural networks (RNNs) [Ma-
jumder et al., 2019], Transformers [Lian et al., 2021], and
graph neural networks (GNNs) [Ghosal et al., 2019] to ex-
tract emotional features from text, achieving some success.
Recently, with the increased availability of multimodal data,
research has shifted towards multimodal emotion recognition
in conversations (MERC), aiming to enhance emotional un-
derstanding by integrating and analyzing information across
multiple modalities.

Existing MERC approaches can be broadly classified
into aggregation-based methods and graph-based methods.
Aggregation-based methods combine modality information
using techniques such as concatenation, attention mech-
anisms, and tensor fusion to perform emotion prediction
[Zadeh et al., 2017; Zadeh et al., 2018]. In contrast, graph-
based methods capture modality interactions and contextual
dependencies in conversations through node-level propaga-
tion and diverse edge designs [Ghosal et al., 2019; Hu et al.,
2022; Shi et al., 2025]. While effective, graph-based meth-
ods struggle to model complex multivariate dependencies be-
tween utterances, leading to the development of hypergraph-
based approaches. For instance, M3Net [Chen et al., 2023]
captures the multivariate and multi-frequency characteristics
of multimodal features by integrating hypergraph and fre-
quency domain decomposition on graph, while HAUCL [Yi
et al., 2024] uses a hypergraph autoencoder to learn adaptive
hyperedge connectivity patterns that are relevant for emotion
prediction.

Despite these advancements, there exist two key chal-
lenges: (i) Insufficient calibration of modality features: Raw
modality features often encompass intricate and multifaceted
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Figure 1: Illustrations of conversational patterns in multimodal sce-
narios, highlighting emotional pathways across modalities, contexts,
and speaker information. The golden labels are highlighted in red.

information [Li et al., 2023a]; however, existing approaches
either overlook deeper exploration of these features or sim-
ply categorize them into intra-modal and inter-modal infor-
mation. This not only limits the utilization of modal features
but may also result in the misinterpretation of emotional cues
during prediction due to imprecise delineation of these fea-
ture types. (ii) Inadequate learning of conversational patterns:
Real-world conversations exhibit inherent structural patterns
across utterances. For instance, a person expressing happi-
ness may simultaneously smile and use a high-pitched voice,
which are correlated features that may appear in utterances
across different speakers, influencing emotional states. Such
conversational patterns reflect the dynamic pathways of emo-
tion shifts across context and modalities, which are critical
for MERC tasks. However, existing approaches struggle to
effectively capture and represent these complex pathways, re-
sulting in superficial emotional understanding.

As illustrated in Figure 1, in utterance #4, Phoebe says
“We did have fun, didn’t we?”, accompanied by a smile and a
high-pitched tone, which influences Rachel, who also smiles
and uses a high-pitched tone. This expression of joy is dif-
ficult to identify from the text alone, as there is no direct
contextual connection between the two. Similarly, in utter-
ances #10 and #11, Phoebe’s intonation and expression af-
fect Rachel. Thus, the emotional state of utterance #11 shifts
to neutral, rather than maintaining the previously expressed
joy. These nuances of emotion across utterance, modality,
and speaker require a deeper exploration and calibration of
modality features to prevent interference from erroneous con-
textual and modality information. More importantly, they
highlight emotional pathways between utterances, enhancing
a deeper understanding while minimizing the impact of un-
necessary contextual or modality information, emphasizing
the need to explore conversational patterns.

To address these challenges, we propose a modality-
calibrated hypergraph fusion network, named MATCH.
MATCH comprises two key components: conversational
entity calibration and emotion-aligned hypergraph fusion.
The entity calibration strategy focuses on the critical enti-

ties in ERC tasks, i.e., utterance and speaker, and performs
a fine-grained calibration at the modality and context levels.
This strategy yields a more refined multimodal representation
compared to simply distinguishing between intra- and inter-
modal information. Subsequently, the calibrated features are
used to construct a hypergraph that captures high-order se-
mantic relationships. Moreover, we construct a line graph to
extract conversational patterns that are challenging to be rep-
resented by hypergraphs. Together, these components enable
MATCH to perceive both surface-level semantic and deeper
emotional pathways, facilitating the generation of compre-
hensive emotional representations. In summary, our contri-
butions are as follows:

• We propose MATCH, a hypergraph-based MERC
model that delivers comprehensive emotional un-
derstanding by conversational entity calibration and
emotion-aligned hypergraph fusion.

• We design a fine-grained conversational entity calibra-
tion strategy that enhances the utilization of multimodal
features by calibrating utterance and speaker knowledge
at both the modality and context levels.

• We propose emotion-aligned learning, which maximizes
the role of hyperedges in MERC by hyperedge- and
graph-level alignment. This facilitates the learning of
surface semantics and deep emotional pathways, en-
hancing the emotional understanding.

2 Related Work
2.1 Multimodal Fusion
Multimodal fusion aims to produce a more comprehensive
representation by integrating multimodal information through
early fusion, decision fusion, and hybrid fusion strategies
[Zhao et al., 2024]. Early fusion combines modalities into
a joint representation [Mai et al., 2020], while decision fu-
sion aggregates predictions from individual modalities us-
ing weighted summation or expert voting. Hybrid fusion
blends the advantages of both approaches, offering greater
flexibility [Duan et al., 2024; Tellamekala et al., 2023;
Li et al., 2025d]. Recent advances in graph deep learning
have enhanced modality interaction capture in MERC. How-
ever, a common issue in both graph-based and non-graph-
based methods is the lack of modality calibration, as simply
extracting inter- or intra-modal information is often insuffi-
cient for producing appropriate results [Joshi et al., 2022;
Li et al., 2023b; Li et al., 2023a]. This challenge aligns with
real-world conversations, where emotional states conveyed
by an utterance are not solely expressed through modality in-
formation.

2.2 Hypergraphs in Emotion Recognition
Hypergraphs provide a powerful framework for modeling
high-order interactions among multiple entities, going be-
yond the pairwise correlations captured by traditional graphs
[Millán et al., 2025]. This flexibility makes them espe-
cially effective for representing complex relationships in a
wide range of real-world datasets [Feng et al., 2019; Ju et
al., 2024; Li et al., 2025c; Li et al., 2025b; Li et al., 2024;
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Li et al., 2025a]. Recent studies have leveraged this capa-
bility to MERC tasks, aiming to capture high-order infor-
mation through a multi-node connectivity paradigm [Chen
et al., 2023; Yi et al., 2024]. However, an important chal-
lenge is that hyperedges, as part of the hypergraph, re-
flect its inherently valuable attributes [Wang et al., 2024;
Chen et al., 2024]. Existing research has not explored how to
leverage hyperedge information to enrich emotion represen-
tations [Lu et al., 2024], limiting the potential of hypergraphs
for MERC tasks. Meanwhile, the issue of information imbal-
ance between modalities persists, causing some hyperedges
to propagate weak semantic knowledge, resulting in signifi-
cant bias in emotional prediction.

3 Methodology
In this section, we provide preliminaries and a detailed in-
troduction to each component of the proposed MATCH, as
depicted in Figure 2.

3.1 Task Definition
Let C = [c1, c2, · · · , cN ] denote a set ofN conversations and
U = [u1, u2, · · · , uM] represent a set of M utterances, re-
spectively. Each conversation ci consists ofM utterances and
involves Q ≥ 2 speakers. An utterance ui, is represented as
a triplet ui = {ua

i , u
v
i , u

t
i} , where ua

i ∈ Rda , uv
i ∈ Rdv and

ut
i ∈ Rdt represent the acoustic, visual, and textual features

of ui, respectively. MERC aims to predict the emotional la-
bel ŷi for each utterance uk based on its corresponding triplet
representation.

3.2 Preliminaries
Definition 1. Graph follows the paradigm of pairwise node
connections. A traditional graph (or in short, a graph) can
be defined as: G = (V, E) where V and E denotes a set of
vertices and edges, respectively. Xg ∈ R|V|×dh is the feature
matrix, dh is the dimension of features, the adjacency matrix
of G is Λg ∈ R|V|×|V|.

Definition 2. Hypergraph extends beyond the pairwise con-
nection paradigm, offering a high-order representation struc-
ture. A hypergraph can be defined as: Gh = (V, Eh,W)
where V is a vertices set initialized with feature Xh ∈
R|V|×dh and Eh is a hyperedges set which contains multiple
vertices {v1, · · · , vn}. Λ ∈ R|V|×|Eh| is the corresponding
incidence matrix.

Definition 3. Line Graph is derived from hypergraph Gh to
capture the structured information within Gh. A line graph
can be defined as: Gl = (Vl, El), where each vertex vi ∈ Vl
is a vertex-hyperedge pair {(v, e) | v ∈ e, v ∈ Vh, e ∈ Eh}
from Gh. Edge set El and adjacency matrix Λl ∈ {0, 1} is
defined by the relation with Λl(vl, vl) = 1 if either v = v′ or
e = e′ for vl = (v, e), vl = (v′, e′) ∈ Vl.

3.3 Utterance Encoding
For visual and acoustic features, we use two separate fully
connected layers to obtain their respective representations.

cζi = FCζ(uζ
i ; θ

ζ
FC), ζ ∈ {a, v}, (1)

where cζi denotes the representation for utterance uζ
i . θζFC

are learnable parameters. For textual features, a bidirectional
GRU is employed to enhance contextual coherence and ob-
tain the corresponding representations:

cti, h
t
i =
←−−→
GRU t(ut

i, h
t
k), k<i, (2)

where ht
i is hidden state of the i-th utterance.

3.4 Conversational Entity Calibration
For MERC, entity information in a conversation carries vary-
ing levels of emotional cues. Unlike previous work that de-
fines all possible relationships in a dialogue as entities (e.g.,
between speakers or within the same speaker), we categorize
entity information into two types: (i) utterance information
and (ii) speaker information. After utterance encoding, we
obtain the contextual information cξi corresponding to each
utterance. For speaker information, we also utilize a bidirec-
tional GRU to extract it.

sξi , ĥ
ξ
i =
←−−→
GRUs(uξ

i , ĥ
ξ
k), ξ ∈ {a, v, t}, (3)

where sξi denotes the speaker information corresponding to
uξ
i and ĥξ

i is the hidden state.
Previous work has focused solely on decoupling utterance

information [Li et al., 2023a], which proves insufficient in
scenarios where the emotional states of speakers vary dynam-
ically. To address this, we calibrate both two conversational
entities, thereby constructing a more precise emotional learn-
ing space. Given the inherent differences in information den-
sity across modalities, we first leverage text to augment the
acoustic and visual features. Take speaker representations sξi
for instance:

ŝvi =

M∑
k=1

exp(sim(sti, s
v
k)/τ1)∑M

j=1 exp(sim(sti, s
v
j )/τ1)

∗ svk, (4)

where ŝvi denotes the enhanced visual representations.
sim(★,★) is the cosine similarity function and τ1 is a tem-
perature parameter. The enhanced acoustic representations
ŝai can be captured in the same manner.

The speaker information often overlaps across both contex-
tual and modality levels, which can obscure clear emotional
cues. Therefore, we calibrate speaker information at both lev-
els to ensure a more accurate and coherent emotional repre-
sentation. Specifically, we enhance recognition performance
by adjusting the distance between semantically similar repre-
sentations in the semantic space through contrastive learning.
First, we add Gaussian noise as an effective way to mitigate
the inevitable loss of information noted in [Wang et al., 2023]
and re-normalize the features when projecting modality data
into the semantic space:

s̃ξi = Norm(ŝξi + θξ), (5)
where noise θξ, ξ ∈ {a, v, t} is sampled from zero-mean
gaussian distribution. Then, the modality- and contextual-
level calibration losses can be defined as:

Lm
cal =−

M∑
i=1

M∑
k∈im+

log
exp(sim(s̃m,ξ

i , s̃m,ξ
k )/τm)∑3M

j ̸=i exp(sim(s̃m,ξ
i , s̃m,ξ

j )/τm)
,

(6)
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Figure 2: Schematic of the proposed MATCH framework.

Lc
cal =−

M∑
i=1

M∑
k∈ic+

log
exp(sim(s̃c,ξi , s̃c,ξk )/τc)∑3M
j ̸=i exp(sim(s̃c,ξi , s̃c,ξj )/τc)

, (7)

where s̃m,ξ
i = Tm(s̃ξi ) and s̃c,ξi = Tc(s̃ξi ). T (★) denotes the

projector, τm, τc are temperature parameters. im+, ic+ de-
note the positive modality- and context-level list for i-th sam-
ple. In this manner, the modality and contextual cues are dis-
tributed across different locations in the representation space,
making it easier to calibrate the deeper semantics conveyed
by each speaker. Combining Equation. (4)-(7), we can obtain
the calibrated representations as:

sξi = sξi ⊕ s̃m,ξ
i ⊕ s̃c,ξi . (8)

We apply the same process to the utterance information cξi to
obtain the calibrated utterance representations cξi . The final
calibrated representation for the i-th utterance is:

xξ
i = cξi + η ∗ sξi , xξ

i ∈ Rdh , (9)

where η is a hyperparameter to control the weight of cali-
brated speaker information. The overall calibration loss is:

Lcal =
∑

i∈{u,s}

∑
j∈{m,c}

Li,j
cal. (10)

3.5 Emotional-aligned Hypergraph Fusion
Graph structures are effective in ERC tasks due to their abil-
ity to model non-Euclidean data. However, traditional graph
neural networks have an inherent limitation, i.e., message
propagation occurs point-to-point, which leads to a loss of
context during the learning process. In contrast, hypergraphs
overcome this by forming hyperedges that connect multiple
nodes, enabling the capture of multivariate conversational re-
lationships that are difficult to model with traditional graphs.

Existing hypergraph-based approaches face a significant
challenge: the underutilization of hyperedge representations,
leading to shallow and incomplete emotion understanding.
These approaches primarily focus on node-level representa-
tions, while node information is eventually aggregated into
hyperedge representations and propagated back to the nodes.

The weak semantic nature of the hyperedges dilutes their im-
pact on individual nodes, causing semantic imbalance. For in-
stance, nodes connected to textual modality hyperedges typi-
cally exhibit stronger semantics than those linked to visual or
acoustic hyperedges.

To this end, we introduce the line expansion [Yang et al.,
2022] to unleash the power of hypergraph for MERC. First,
we categorize emotional features into two main types: (i)
semantic information learned by hypergraph, and (ii) con-
versational pattern learned by line graph. These two types
of information complement each other, revealing emotional
pathways between utterances and enabling the generation of
a more comprehensive understanding of emotion. Addition-
ally, we introduce emotion-aligned learning to ensure consis-
tent understanding across these two perspectives.

Hypergraph Semantic Learning. We begin by construct-
ing conversational hypergraph Gh = (V, Eh) to capture high-
order semantic nuances across utterances. Following [Chen et
al., 2023], we define two types of hyperedges (e1, e2) ∈ Eh:
one connecting nodes within the same context and the other
connecting nodes within the same modality. Each item in
triplets of utterances {ua

i , u
v
i , u

t
i} is treated as nodes v ∈ V , |

V |= 3 ×M, which are initialized with calibrated represen-
tations xξ

i . Subsequently, we have the corresponding hyper-
graph incidence matrix Λ ∈ R|V|×|E|. Based on this, we ap-
ply a hypergraph convolutional network to capture the funda-
mental semantic representations shared between utterances.
Formally:

X(l+1) = σ(D−1/2
v ΛWD−1

e Λ⊤D−1/2
v X(l)Θ(l)), (11)

where Dv and De denote the node degree matrix and hyper-
edge degree matrix, respectively. σ represents a nonlinear
activation function. W is a learnable matrix. Considering
that the low density of semantics in non-textual modalities
may be further amplified during the propagation, we adopt
an emotion-aligned learning strategy to alleviate this issue,
which will be presented in the following sections.

Conversational Pattern Learning. Although multimodal
representations learned through hypergraphs can capture
emotion states to some extent, meaningful emotion consensus
can also emerge between unpaired utterances in complex di-
alogues through cross-modal information, i.e., the pathways
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of emotion transfer within the context. These emotion path-
ways are reflected in the information flow across hyperedges,
while hypergraph is more sensitive to node-level details. To
address this, we introduce line graphs to further learn the con-
versational pattern. First, we construct the line graph adja-
cency matrix Λ̂ ∈ R|R|×|R| based on Λ ∈ R|V|×|E|, where
R = 6 × M. Subsequently, we transform the hypergraph
node embedding X ∈ R|V|×dh into the line graph feature
vector through a node projector Pv to explore the conversa-
tional pattern:

X̂ = PvX ∈ R|R|×dh . (12)

Let X̂ be the line graph feature at the first layer, that is,
X̂(0) = X̂ , the following convolution on line graph is:

X̂(k+1) = σ(D̃−1/2Λ̃D−1/2X̂(k)W
(k)
le ), (13)

where Λ̃ = Λ̂ + 2I, Wle is a learnable matrix.
Let X̂(K) denote the node representations obtained from

the line graph learning module. To preserve semantic consis-
tency, we apply the back-projector P ′

v , which re-projects the
line node representations into the hypergraph space. This re-
projection is performed based on the reciprocal of the edge
degree, formally expressed as:

X
(K)

= P
′

vX̂
(K) ∈ R|V|×dh . (14)

In this way, the structural information embedded in the hy-
pergraph is re-expressed as vertices in the line graph through
the convolution and back-projection processes. This enables
the model to capture and understand the deeper, hidden con-
versational patterns.

Emotional-aligned Learning. Hypergraphs and line
graphs provide complementary perspectives for emotion un-
derstanding. However, weak semantic hyperedges reduce
their ability to effectively convey emotion. To address this,
we propose emotion-aligned learning that enhances the effec-
tiveness of semantic transfer by optimizing the distribution
discrepancy through hyperedge- and graph-level alignment.
Hyperedge-level alignment optimizes the gap between weak
and strong semantic hyperedges, enhancing the representa-
tional capacity of acoustic and visual features through the in-
corporation of textual features. Based on Equation. (11), the
hyperedge representations can be defined as follows:

B = Λ⊤D−1/2
v XΘ ∈ R|E|×dh , (15)

where B denotes the hyperedge representations, let Bξ de-
notes the representations of three modalities. The corre-
sponding distributions are:

Dξ = softmax(Bξ/τemo), (16)

where τemo is a temperature parameter.
We introduce the Kullback-Leibler (KL) divergence loss to

minimize the distribution gap, formally:

Lhyperedge =
∑

ζ∈{a,v}

Dt log

(
Dt

Dζ

)
. (17)

In this manner, the hyperedges Bζ enrich their representations
by iterating through the strong semantic representation, pre-
venting the propagation of invalid information.

Note that, both line graph and hypergraph provide mean-
ingful emotional representations, and the graph-level align-
ment aims to enhance knowledge transfer between line graph
and hypergraph, formally:

Lemo =
1

2M

M∑
j=1

(
Xj

(K)
log

(
Xj

(K)

X
(L)
j

)

+ Xj
(L) log

(
Xj

(L)

Xj
(K)

))
,

(18)

where X and X are the distributions derived from Equation
(16) corresponding to X and X .

3.6 Training Objective
Finally, we apply a fully connected layer to obtain the predic-
tion labels ŷi. Formally:

ŷi = softmax(Wcls(x
(L)
i ⊕ x

(K)
i ) + bcls). (19)

The main ERC task loss can be defined as:

Lmain = − 1

N ×M

N∑
i=1

M∑
j=1

yi,j log(ŷi,j) + η2∥Θ∥2, (20)

where η2 is a hyperparameter. The overall loss is defined as:

Lall = Lmain+γ1∗Lcal+γ2∗Lhyperedge+γ3∗Lemo, (21)

where γ1, γ2, γ3 are hyperparameters. Their sensitivity is
studied in Section 4.6.

4 Experiments
4.1 Datasets
We evaluate the MATCH on two benchmark datasets, IEMO-
CAP and MELD. The detailed statistics are shown in Table 1.

IEMOCAP [Busso et al., 2008] contains video data from
dyadic conversations with ten speakers, with utterances clas-
sified into six emotion categories: Happy, Sad, Neutral, An-
gry, Excited, Frustrated. Following [Hu et al., 2021], we use
the first four sessions for training, the last for testing, and ran-
domly select 10% of the training set for validation.

MELD [Poria et al., 2019] consists of video data from
multi-party conversations in TV show “Friends”, with utter-
ances classified into seven emotion categories, i.e., Neutral,
Surprise, Fear, Sadness, Joy, Disgust, Anger. We use the pre-
defined splits for training and evaluation.

Dataset Conversations Utterances Classes
train val test train val test

IEMOCAP 120 31 5810 1623 6
MELD 1039 114 280 9989 1109 2610 7

Table 1: Statistics of the two benchmark datasets.
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4.2 Baselines
We compare our proposed MATCH with ten baseline mod-
els including aggregation-based methods like DiaRNN [Ma-
jumder et al., 2019] CTNet [Lian et al., 2021] CauAIN
[Zhao et al., 2022] CMERC [Tu et al., 2024b], graph-based
methods like DiaGCN [Ghosal et al., 2019] MM-DFN [Hu
et al., 2022] AdaIGN [Tu et al., 2024a] PCGNet [Tu et al.,
2024c], and hypergraph-based methods like M3Net [Chen et
al., 2023] HAUCL [Yi et al., 2024].

4.3 Implementation Details
All experiments were conducted on an NVIDIA RTX A6000
GPU using the torch-geometric package. We used a batch
size of 16 for both datasets. For IEMOCAP, the learning rate
was set to 1e-4 with a dropout rate of 0.4, while for MELD,
the learning rate was set to 5e-4 with a dropout rate of 0.3.
Additional parameter settings are provided in Table 2.

Dataset τ1 η τm τc τemo η2 L K

IEMOCAP 0.5 1 0.4 0.5 0.5 3e-5 4 3
MELD 0.4 1 0.3 0.4 0.4 3e-5 4 4

Table 2: Hyperparameter settings on two datasets.

4.4 Results and Discussion
As shown in Table 3, MATCH outperforms existing ap-
proaches on both datasets. Specifically, ACC improves by
0.92% and W-F1 increases by 0.57% on IEMOCAP. Simi-
larly, on MELD dataset, ACC improves by 0.31%, and W-
F1 improves by 0.02%. Our method also achieves competi-
tive F1 scores across most emotion categories, with notably
optimal performance on “Neutral” and “Excited,” surpassing
state-of-the-art results.

An obvious drawback of aggregation-based approaches is
the high coupling of contextual information across multiple
time steps. While CTNet addresses this by introducing dif-
ferent GRU units and employing an attention mechanism to
enhance discriminability, it still struggles to capture multiple
complex conversational relationships. In contrast, MATCH
improves upon these methods by calibrating entity informa-
tion at both the contextual and modality levels, enhancing the
quality of utterance representation and mitigating the inter-
ference of natural noise in the utterance, thus improving the
subsequent fusion process.

Graph-based methods capture speaker and contextual in-
teractions through edges, improving perception of complex
relationships within conversations. Hypergraph-based mod-
els, particularly, offer superior emotional understanding due
to the capacity to yield high-order relationships between mul-
tiple connected nodes. While M3Net and HAUCL lever-
age this property of hypergraphs, HAUCL adaptively con-
structs hyperedges via a hypergraph variational autoencoder,
reducing the misleading influence of redundant hyperedges
on node information transfer. M3Net, by contrast, enriches
node-level information through multi-frequency decomposi-
tion. However, both methods primarily focus on node-level
information, neglecting the role of hyperedges in contextual

understanding. Our MATCH enhances hypergraph represen-
tations through line expansion, capturing both fundamental
semantic expressions and deeper conversational patterns. The
emotion-aligned learning further minimizes the information
discrepancies between the two, enabling more effective emo-
tion comprehension.

Interestingly, we find that MATCH outperforms CauAIN
and PCGNet, which rely on external knowledge includ-
ing personality traits and commonsense. This indicates
that MATCH achieves comprehensive emotion understand-
ing solely through multimodal data, without the need for ex-
ternal knowledge.

4.5 Ablation Study

We conduct ablation experiments on MATCH to validate
each component’s effectiveness.

Effect of Conversational Entity Calibration. As shown
in Table 5, removing the entity calibration module signifi-
cantly degrades MATCH’s performance, as it relies solely
on initial features which contain coupled or redundant in-
formation, hindering reliable predictions. This unreliabil-
ity is effectively alleviated by introducing entity calibration.
While M3Net attempts to mitigate coupling through multi-
frequency decomposition, it does not fully distinguish the
contributions of contextual and modality information, lead-
ing to suboptimal performance. We apply the proposed entity
calibration strategy to several baselines, with the results in
Table 4 showing improvements in all cases. This indicates
that most baselines have limitations in utilizing multimodal
features, and our entity calibration strategy provides a foun-
dation for extracting deeper emotional cues.

Effect of Emotion-aligned Hypergraph Fusion. As
MATCH’s core module, emotion-aligned hypergraph fusion
is designed to capture high-order semantic cues and diverse
dialogue relationships. Without it, MATCH struggles to
perceive complex relationships, limiting its ability to facili-
tate effective cross-modal interactions essential for MERC.
Furthermore, deeper conversational patterns are missed, pre-
venting the accurate conveyance of similar emotions through
contextual and modality relationships, and resulting in the
loss of emotional pathways. This lack of deeper informa-
tion severely impacts the model’s ability to generate accurate
emotion judgments.

Effect of Conversational Pattern Learning. We intro-
duce line expansion to enhance the hypergraph’s ability to
represent high-order semantics, uncovering meaningful con-
versational patterns and emotional pathways, emphasizing
the positive role of hyperedges in MERC. Without this, the
node-focused propagation mechanism of hypergraph fails to
effectively transmit hyperedge information, leading to redun-
dant semantics being mistakenly propagated to connected
nodes. Additionally, learning conversational patterns offers
more contextualized emotional insights and effectively pre-
serves implicit semantic transfer within conversations. Inte-
grating conversational patterns with global semantic under-
standing through graph-level alignment enables a more com-
prehensive affective understanding.
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Methods IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Acc W-F1 Neutral Surprise Fear Sadness Joy Disgust Anger Acc W-F1

★DiaRNN♯ [Majumder et al., 2019] 32.20 80.26 57.89 62.82 73.87 59.76 63.52 62.89 76.97 47.69 - 20.41 50.92 - 45.52 60.31 57.66
★DiaGCN♯ [Ghosal et al., 2019] 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89 75.97 46.05 - 19.60 51.20 - 40.83 58.62 56.36

CTNet♮ [Lian et al., 2021] 51.30 79.90 65.80 67.20 78.70 58.80 68.00 67.50 77.40 52.70 10.00 32.50 56.00 11.20 44.60 62.00 60.50
★MM-DFN♯ [Hu et al., 2022] 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18 77.76 50.69 - 22.93 54.78 - 47.82 62.49 59.46
♣CauAIN♮ [Zhao et al., 2022] - - - - - - - 67.61 - - - - - - - - 65.46

CMERC♮ [Tu et al., 2024b] 60.73 81.89 71.65 69.51 77.45 67.02 - 71.98 80.18 60.42 24.69 40.48 65.30 32.31 54.16 - 66.85
★M3Net♭ [Chen et al., 2023] 61.27 78.67 68.70 65.47 76.02 62.79 69.07 69.17 79.53 59.09 18.42 37.38 65.32 21.15 54.52 66.86 65.78
AdaIGN♮ [Tu et al., 2024a] 53.04 81.47 71.26 65.87 76.34 67.79 - 70.74 79.75 60.53 - 43.70 64.54 - 56.15 - 66.79
★HAUCL♮ [Yi et al., 2024] 53.57 82.04 68.61 66.44 75.60 68.23 70.30 70.27 80.01 59.85 21.95 36.72 63.79 29.31 55.54 67.62 66.23

♣★PCGNet♮ [Tu et al., 2024c] 49.83 82.70 71.62 69.14 76.08 70.98 71.72 71.77 80.25 61.02 25.88 41.48 64.65 25.24 56.09 67.85 67.02

MATCH(Ours) 59.18 82.10 74.44 67.28 79.67 66.31 72.64 72.55 80.38 61.34 19.75 41.82 63.75 26.67 56.98 68.16 67.04

Table 3: Comparison of results against various MERC models. ★ denotes source code available. ♣ denotes the external knowledge is
introduced in method. ♯, ♮ represents results from MM-DFN, and original papers, respectively. ♭ denotes results from out re-implementation.

Methods IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Acc W-F1 Neutral Surprise Fear Sadness Joy Disgust Anger Acc W-F1

DiaRNN♭ 32.20 80.26 57.89 62.82 73.87 59.76 63.52 62.89 75.84 48.92 - 16.73 51.16 - 43.91 59.62 56.78
w/ Entity Calibration 33.98 83.90 56.50 60.39 73.09 60.48 64.02 63.04 76.87 46.10 - 14.88 53.87 - 44.09 60.27 57.26

DiaGCN♭ 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89 69.81 43.12 6.42 21.07 69.03 5.06 36.98 50.61 52.61
w/ Entity Calibration 34.21 70.48 60.89 63.47 72.83 60.48 64.26 63.55 71.10 48.10 5.13 30.07 51.16 2.44 44.14 54.14 55.67

MM-DFN♭ 33.48 79.83 66.12 68.11 73.86 67.18 67.78 67.18 75.89 46.52 - 24.23 54.14 - 43.29 59.00 57.52
w/ Entity Calibration 37.19 78.50 66.50 69.72 77.46 67.84 68.76 68.38 76.88 47.59 - 30.90 52.09 - 41.75 60.54 58.13

M3Net♭ 61.27 78.67 68.70 65.47 76.02 62.79 69.07 69.17 79.53 59.09 18.42 37.38 65.32 21.15 54.52 66.86 65.78
w/ Entity Calibration 54.48 80.00 72.93 65.02 77.51 69.05 71.47 71.46 80.22 61.09 19.75 38.61 65.01 28.33 54.41 67.85 66.58

HAUCL♭ 54.36 80.08 68.26 65.55 73.18 65.43 68.64 68.77 79.58 58.82 18.67 39.88 63.16 28.83 52.99 66.82 65.65
w/ Entity Calibration 50.77 78.19 70.07 64.22 71.48 68.21 68.88 68.79 79.37 60.20 25.00 40.00 64.44 25.00 53.95 66.93 66.05

PCGNet♭ 46.03 83.33 69.38 65.24 77.24 64.35 69.44 69.25 76.23 58.10 26.67 43.87 64.50 26.85 54.22 63.49 64.75
w/ Entity Calibration 50.18 84.08 71.14 64.72 73.84 65.95 69.87 69.84 78.13 59.93 25.90 40.34 66.06 26.32 55.01 65.63 65.89

Table 4: Performance of various MERC methods with conversational entity calibration.

Methods IEMOCAP MELD

Acc W-F1 Acc W-F1

w/o Contextual Calibration 69.56 69.45 67.59 66.44
w/o Speaker Calibration 70.30 70.19 67.62 66.52

w/o Entity Calibration(full) 69.38 69.32 67.27 66.09
w/o Emotion-aligned Hypergraph Fusion 67.78 67.95 66.93 65.38

w/o Conversational Pattern Learning 70.43 70.64 67.13 66.14

Table 5: Ablation results for MATCH.

Figure 3: Improvement in W-F1 score of MATCH across different
hyperparameters on IEMOCAP.

4.6 Hyperparameter Sensitivity Analysis
We analyze key hyperparameters γ1, γ2, γ3, and the number
of hypergraph (L) and line graph (K) layers on IEMOCAP
validation set. Figure 3 demonstrates that the impact of these
hyperparameters on the overall W-F1 results follows a trend
of initial improvement, which then declines and stabilizes as
their values increase. Excessively large parameter values re-
duce their effectiveness, indicating challenges in achieving an
optimal balance between primary and auxiliary tasks. Figure
4 illustrates that performance improves initially, but declines

Figure 4: Improvement in W-F1 score of MATCH with varying hy-
pergraph and line graph layers on IEMOCAP.

as the number of hypergraph or line graph layers increases.
An excessive number of layers fails to produce more mean-
ingful emotion representations.

5 Conclusion

In this paper, we introduce MATCH, a hypergraph-based
framework for MERC. MATCH enhances utterance rep-
resentations by calibrating dialogue entities at context and
modality perspectives. It captures high-order substructural in-
teractions in the hypergraph through line expansion, extract-
ing deep emotional cues while preserving fundamental se-
mantics, enabling effective emotional pathway learning. Be-
sides, emotion-aligned learning improves knowledge trans-
fer at hyperedge and graph levels. Experiments demonstrate
that MATCH outperforms state-of-the-art methods on two
datasets without relying on external knowledge, fully lever-
aging the potential of hypergraphs in MERC.
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