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Abstract

The use of estimators instead of stochastic gradients
for updates has been shown to improve algorithm
convergence rates of, but their impact on generaliza-
tion remains under-explored. In this paper, we inves-
tigate how estimators influence generalization. Our
focus is on two widely studied problems: stochas-
tic optimization (SO) and stochastic compositional
optimization (SCO), both under convex and non-
convex settings. For SO problems, we first analyze
the generalization error of the STORM algorithm
as a foundational step. We then extend our analy-
sis to SCO problems by introducing an algorithmic
framework that encompasses several popular algo-
rithmic approaches. Through this framework, we
conduct a generalization analysis, uncovering new
insights into the impact of estimators on generaliza-
tion. Subsequently, we provide a detailed analysis
of three specific algorithms within this framework:
SCGD, SCSC, and COVER, to explore the effects
of different estimator strategies. Furthermore, in the
context of SCO, we propose a novel definition of
stability and a new decomposition of excess risk in
the non-convex setting. Our analysis indicates two
key findings: (1) In SCO problems, eliminating the
estimator for the gradient of the inner function does
not impact generalization performance while signifi-
cantly reducing computational and storage overhead.
(2) Faster convergence rates are consistently associ-
ated with better generalization performance.

1 Introduction

Recently, the Stochastic Compositional Optimization (SCO)
problem has found extensive applications in machine learning,
including model-agnostic meta-learning (MAML) [Finn et al.,
2017] and reinforcement learning [Dann et al., 2014]. The
SCO problem [Qi erf al., 2021; Chen et al., 2021; Wang et al.,
2017; Gao and Huang, 2021] is formulated as follows:

g[él)r{l{F(x) =f Og(x) = EV[fV(EW[gw(x)D]}’ ey

*Corresponding Authors.

where f : R" — R?% and g : R? — R% are defined
on a convex domain X C RY v and w are independent
random variables. Here, g, (-) and f, (-) represent random
functions parameterized by w and v, respectively. Solving
the SCO problem is challenging because, in SCO, acquiring
unbiased gradient estimates of the compositional function
F(z) is particularly difficult. In other words, the expecta-
tion E, ,[V f. (9w (z))] does not equal V f,,(g.,(x)), making
it infeasible to obtain an unbiased estimate of F'(x).

Due to the prevalence of SCO, many studies have been
developed to address its challenges [Jiang et al., 2022; Liu
et al., 2024]. Notable contributions include the development
of Stochastic Composite Gradient Descent (SCGD) [Wang
et al., 2017], which is based on the momentum technique to
estimate the inner function value and achieves an O(T~1/4)
convergence rate in non-convex settings. Additionally, Vari-
ance Reduction (VR) techniques [Johnson and Zhang, 2013;
Fang et al., 2018; Cutkosky and Orabona, 2019] have been
developed. VR techniques typically employ a gradient esti-
mator to track the gradient more accurately, updating it us-
ing estimated gradient values rather than relying solely on
stochastic gradients. Building on the Variance Reduction (VR)
technique, SCSC and COVER were proposed in [Chen e al.,
2021] and [Qi et al., 2021], respectively. SCSC achieves a
convergence rate of O(7T~'/4), while COVER improves this
rate to O(T~1/3) in non-convex settings.

Although numerous algorithms for solving the SCO prob-
lem have been developed based on different techniques for
designing estimators, as shown above, much of the focus
over the past few decades has been on improving conver-
gence rates by using different types and quantities of esti-
mators. However, the impact of estimator variations on the
generalization of these algorithms is often overlooked. This
aspect is crucial, as generalization serves as a key indica-
tor of how well a learned model, trained on given training
samples, performs on unseen test data [Bassily et al., 2020;
London et al., 2016].

To explain the impact of estimators, we begin with the
Stochastic Optimization (SO) problem [Zhang, 2004; Bottou
et al., 2018], which can be viewed as a special case of the SCO
problem (when g(z) = ). It can be formulated as follows:
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Figure 1: Performance of SGD and STORM in both convex and
non-convex settings.

Due to the complexity of the SCO problem, different algo-
rithms choose different update strategies for different levels of
the function, making it difficult to control variables for com-
parison. In contrast, the SO problem allows us to compare two
algorithms—one with estimators and one without—making
the comparison more intuitive and convenient. Therefore,
we compare SGD with other variance-reduced (VR) algo-
rithms within the SO problem. Among VR-based algorithms,
STOchastic Recursive Momentum (STORM) [Cutkosky and
Orabona, 2019] stands out, as it significantly improves the
convergence rate from SGD’s O(T~/4) to O(T~'/3) in non-
convex settings, bringing the solution closer to near-optimality.

We conducted a toy experiment to compare SGD and
STORM in convex and non-convex settings, as shown in Fig-
ure 1. In the non-convex setting, STORM demonstrated a
faster convergence rate than SGD, as shown in Figure 1b, and
it also exhibited superior generalization performance because
the gap between training loss and testing loss is smaller. How-
ever, in the convex setting (Figure 1a), the trend reversed. It
can be noticed that the estimator not only changes the con-
vergence rate of the algorithm, but also the generalization of
the algorithm. This observation raises an interesting question:
How does the estimator affect the generalization?

Therefore, in this paper, we analyze the effect of estimators
on generalization under the SO and SCO problems. We first
conduct a generalization analysis of STORM, comparing the
results to SGD and exploring the estimator’s impact on gen-
eralization as an initial step. Considering the complexity of
the SCO problem, we then propose a generalized algorithmic
framework that encompasses many existing algorithms and
applies to multiple estimators and various estimation strate-
gies—i.e., the objects to which the estimator is applied. Sub-
sequently, we analyze the generalization of this framework
in both convex and non-convex settings. Through our analy-
sis, we identify the estimators that are crucial and those that
are less important. Furthermore, we perform a generalization
analysis of three representative algorithms—SCGD, SCSC,
and COVER—under the SCO problem to compare how dif-
ferent estimation strategies impact algorithm generalization.
Based on this analysis, we also establish a relationship be-
tween the convergence rate and generalization, summarized in
Table 2. In summary, the main contributions of this paper are
as follows:

* We propose a generalized algorithmic framework for the
SCO problem. We then analyze the proposed framework

in both convex and non-convex settings, along with the
generalization performance of three representative algo-
rithms—SCGD, SCSC, and COVER—to understand how
different strategies influence generalization outcomes. In
addition, we have found that convergence and generaliza-
tion are closely related; specifically, a faster convergence
rate tends to enhance generalization performance.

For the non-convex setting of the SCO problem, we in-
troduce a novel definition of stability. This new stability
definition is based on the gradient of the objective func-
tion, recognizing that in a non-convex setting, the goal
is often to find a stationary point rather than the global
minimum. We also introduce a new excess risk decom-
position for the SCO problem in the non-convex setting.
To the best of our knowledge, this new definition and
the new excess risk decomposition allow us, for the first
time, to generalize our analysis of algorithms for the SCO
problem in the non-convex setting. Through our analy-
sis, we provide guidance on the use of estimators when
designing algorithms.

2 Related Work

SO and SCO Algorithms. In addition to SGD [Zhang, 2004;
Bottou et al., 2018] and VR-based methods [Johnson and
Zhang, 2013; Fang et al., 2018; Cutkosky and Orabona,
2019] for stochastic optimization, several improved algo-
rithms have emerged from various perspectives. For example,
Nesterov acceleration [Nesterov, 1983; Attouch and Peypou-
quet, 2016] and adaptive learning rates [Duchi et al., 2011;
Kingma and Ba, 2014; Zhou et al., 2018] can achieve an im-
pressive O(T‘l/ %) convergence rate. Due to biased gradient
estimations on both inner and outer functions, the predom-
inant trend in addressing SCO problems is leveraging VR
techniques. For example, variants of SARAH [Nguyen er al.,
2017] and SPIDER [Fang et al., 2018] achieve an impressive
O(T~'/3) convergence rate with large batch sizes [Zhang and
Xiao, 2019]. COVER [Qi er al., 2021] proposes a batch-free
algorithm based on STORM with the same rate without using
mini-batches. Furthermore, recent advancements extend VR
techniques to federated SCO [Gao and Huang, 2021], multi-
level SCO [Jiang er al., 2022], and compositional minimax
problems [Liu et al., 2024]. Despite extensive exploration of
these problems, their generalization remains under-explored.

Generalization Analysis. Algorithmic stability is a cor-
nerstone concept in learning theory, gauging an algorithm’s
resilience to perturbations in the training dataset, closely in-
tertwined with its learnability [Rakhlin et al., 2005; Shalev-
Shwartz et al., 2010]. One of the most widely employed
stability concepts is uniform stability [Bousquet and Elis-
seeff, 2002], often signaling nearly optimal generalization
bounds with high probability [Feldman and Vondrak, 2019;
Bousquet and Elisseeff, 2002]. While ML methods can ex-
cel in training data but falter in generalization, the uniform
convergence approach in generalization analysis helps illu-
minate the discrepancy between training and testing across
the entire hypothesis space [Foster et al., 2018; Nagarajan
and Kolter, 2019]. Initially, uniform convergence focused
on function values [Bartlett and Mendelson, 2002], which is
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less suited for stochastic optimization with nonconvex loss
functions. Subsequent studies have improved upon this, en-
compassing uniform convergence of function values [Lei et
al., 2021], gradient risks in smooth problems [Ghadimi and
Lan, 2013], and Moreau envelope gradients in weakly convex
problems [Davis and Drusvyatskiy, 2019].

3 The Target of Analysis and Our Framework

In this section, we illustrate the target of the generalization
analysis for both convex and non-convex settings, and then
we introduce our proposed framework, followed by some
necessary notation.

3.1 The Target of Analysis

We first introduce some notations to clarify our final target.
Let 2* = arg mingex F(z) be the model with the minimal
population risk in X'. Let A be a randomized learning algo-
rithm and A(.S) be the output model when applying A to the
dataset S. Let || - || denote the Euclidean norm, and let V f ()
represent a subgradient of f at . If f is differentiable, then
V f(x) corresponds to the gradient of f at 2. It is important to
note that we use the same symbols, Fis(x), F(z), to represent
the empirical risk and population risk for both SO and SCO
problems. However, their meanings differ in these two con-
texts, and we will provide detailed notations in Section 4 and
5 to clarify them in the following section.

The Convex Setting. For the convex setting that is lower
bounded, there is always an optimal global minimum, de-
noted as z*. The model’s behavior is quantified by the
population risk, with the goal of analyzing the excess risk
Es a[F(A(S))] — F(z*). The standard approach [Bousquet
and Elisseeff, 2002] decomposes excess risk into two error
terms as follows:

Es4[F(A(S))] - F(2*) = Es a[F(A(S)) - Fs(A(S))]
+Esa[Fs(A(S)) — Fs(z%)], ()

where we use the relation Eg 4[Fs(z*)] = F(z*) because =*
is independent of both A and S. We refer to the difference
F(A(S)) — Fs(A(S)) mentioned in (3) as the generalization
error, as it reflects how the model generalizes from training to
testing behaviors. The term Fg(A(S)) — Fs(z*) is identified
as the optimization error since it measures the algorithm’s
effectiveness in minimizing the empirical risk, which is widely
used in [Hardt e al., 2016; Kuzborskij and Lampert, 2018;
Charles and Papailiopoulos, 2018].

The Non-Convex Setting. However, for non-convex learn-
ing problems, we focus on whether the learning algorithm can
find an approximate stationary point, that s, | VFs(A(S))| <
€ because it is difficult to find the global optimum [Zhang,
2004; Bottou et al., 2018; Cutkosky and Orabona, 2019].
Consequently, the excess risk used in convex settings are
not applicable. Instead, we employ the population gradient
norm as the performance measure, shifting our final target to
Es a[||[VF(A(S))]|]. Based on this measurement method, we
have the following decomposition:

Esa[IVF(AS)I] < EsallVF(A(S))
— VEs(AG)I] +Esa[[VEs(AS)I]- 4

Similarly to the decomposition in the convex setting, we
refer to the first term, Eg 4[[[VF(A(S)) — VFs(A(S))][]
as the generalization error and to the second term,
Es, 4 [[[VFs(A(S))]]]. as the optimization error.

3.2 The Proposed Framework

We first introduce some notations. Similar to [Wang et al.,
2017; Qu et al., 2023; Yang et al., 2023], we concern the case
that the random variables v and w are independent. In practice,
we do not know the population distributions for v and w for
SCO problem but only have access to a set of training data
S={vi,...,Vp,w1,...,wn . Now we give the framework
for solving (2). For the algorithms of the SCO problem, their
main difference lies in the different designs of u; and v;. Some
commonly used approaches for estimating the inner function
value are as follows:

Algorithm 1 Framework of SCO

1: Inputs: Training data S = {v1,...,Vn, w1,..., W };
Number of iterations 7', parameter sequence {n; }, {5: }
2: Initialize g € X and yg € R4
3: fort =0toT —1do
4: Randomly sample j; € [1,m], obtain g, () and
Vi, (x1) € R4
5. Estimate inner function value u; according to Eq.(5)
6:  Estimate inner function gradient v; according to Eq. (6)
or Eq. (7)
7: Randomly sample i; € [1,7], obtain V f,, (u;) € R?
8:  Calculate the total gradient v; = v; - Vf,,, (uy)
9:  Update:
10: It+1 = HX (It — T]tVt)
11: end for
12: Outputs: A(S) = x7 or z, ~ Unif({x}l ;)

Momentum-type : u; = (1 — B)us—1 + Bigu,, (1),
VR-type : uy = (1 — Be)ut—1 + Bigu;, (v1) &)
+ (1 K ﬁt)(gw]‘t (.’,Ct) - gw]‘t (‘(L.tfl))'

For the inner function gradient, there are typically two cases.
The first is to use the stochastic gradient directly, i.e.,

Vanilla-type: v, = Vo, (7¢). (6)

In other cases, an estimator is used instead of the stochastic
gradient for updating. There are many types of estimators, and
we list a few common ones below:

Momentum-type: v = (1 — B;)vi—1 + BV, (1),
VR-type: VUVt = (1 - ﬂt)vt—l + Bthwjt (It) (7)
+ (1 - /Bt)(vgwjt (‘rt) N vgw]‘t (xtfl))'
It is worth noting that there are many other types of meth-
ods, such as SPIDER [Fang et al., 2018], SVRG [Johnson
and Zhang, 2013], and SAGA [Defazio et al., 2014]. Tt is

also important to emphasize that algorithms based on the pro-
posed framework are not limited to the aforementioned three
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methods but also include others, such as NASA [Ghadimi et
al., 2020], CIVR [Zhang and Xiao, 2019], and Compositional
SVRG [Lian et al., 2017], among others. Naturally, these
algorithms select different parameter sequences depending on
the estimator used.

Subsequently, we aim to analyze the generalization of the
proposed framework. To achieve this, we derive generalization
bounds with the help of stability analysis. Therefore, we first
introduce the definition of stability. We begin by presenting
the definition of stability in the context of the SO problem,
followed by our newly introduced definition of stability for
the SCO problem.

3.3 Definition of Stability

Definition 1 (Uniform Stability for SO). Let A be a random-
ized algorithm. Let S = (v1,va,...,vy) be drawn i.i.d from
D. Let S and S’ be neighboring datasets, differing by at most
one data point.

e We say A is e-uniformly-stable in function val-
ues if for all neighboring datasets S,S’, such that

sup, Ea [£,(A(S)) ~ f,(A(S)] < e

e We say A is e-uniformly-stable in gradients if
for all neighboring datasets S,S’, such that
sup, E4 [[IV£, (A(S)) — V£, (A(S)IIP] < €

Definition 1 defines stability for convex and non-convex
settings. In convex settings, the goal is to find the global
minimum, so stability is defined by function values. In non-
convex settings, the focus is on finding an approximate stable
point [Cutkosky and Orabona, 2019; Levy et al., 2021; Lei,
2023], where the gradient approaches zero, leading to stability
being defined by the function gradient.

When considering SCO problems in (1), the definition
of stability becomes more complex. Changes in the sam-
ple may occur in either the set {v1,vs,...,v,} or the set
{w1,wa, ..., wn}. Although various stability concepts, such
as locally elastic stability [Deng et al., 2021; Zhang et al.,
2021; Qu et al., 2022], hypothesis stability [Charles and Pa-
pailiopoulos, 2018; Bousquet ef al., 2020], and PAC-Bayesian
stability [Li et al., 2019; Rivasplata er al., 2020], have been de-
veloped, they are not suited for non-convex SCO problems. To
address this, we introduce a novel stability concept designed
for this context and utilize it in our analysis. Let S” denote
the change at the i-th data point in {v1,va, ..., v, }, and S7%
denote the change at the j-th data point in {wq, wa, ..., W},
we propose a new definition of stability.

Definition 2 (Uniform Stability for SCO). Let A be a random-
ized algorithm.

* We say A is e-uniformly-stable in function values
if for all neighboring datasets S,S“Y, we have
Py Ea [£ (00 (A(9))) — Fo(gu(A(S™))] < e
and for all neighboring datasets S,S”%, we have
sup,, E4 [9,(A(5)) = 9. (A(S7))] < ew.

e We say A is c-uniformly-stable in  gradi-
ents if for all neighboring datasets S,S"",
we have sup,,, ]EA[HVfl,(gw(A(S))) -

V(g (AS™?] < €2 and for all neighbor-
ing datasets S,57*, we have sup, E4[g.(A(S)) —
QW(A<S]M))} < €w

In Definition 2, we stabilize the function value of the inner
function g(+) for both settings. An alternative stability defini-
tion considers: sup,, E4[||Vgw(A(S)) =V, (A(S5))|?] <
€2 for the non-convex setting. However, this approach
relies on the chain rule and requires additional assump-
tions, specifically that the gradient of the outer func-
tion is bounded, i.e. ||V f,(-)|| is bounded, to control
IV fu (5 2271 9oy (A(S)) =V o, (9(A(S)))|. In contrast,
Definition 2 leverages the Lipschitz continuity of the outer
function, avoiding the need for gradient boundedness.

Our final target is presented in (3) and (4). With the concept
of stability and the stability bounds of algorithms, we can
derive the generalization error, which corresponds to the first
term on the right side of (3) and (4). By also considering the
optimization error, represented by the second term, we can
achieve the desired results.

4 Theoretical Analysis of SOs

For the SO problem in (2), the training and testing behavior
can be typically measured by the empirical risk Fg(z) :=
L5 | fu.(x) and the population risk F(z) := E,[f,(z)].
To facilitate our proof, we first present the following es-
sential definitions. These concepts are fundamental to the
generalization analysis of SO problems [Hardt er al., 2016;
Bousquet and Elisseeff, 2002; Lei, 2023].

Definition 3. Let f : R? — R. There exist constants
Ly, Cy > 0 holding the following conditions:

» We say f is Lipschitz continuous if sup, ||f,(z) —
fo@)| < Lyllz — &[], vz, & € RY

» We say f is smoothness if sup,, |V f,(z) — Vf,(2)] <
Ctllz — 2|, Vo, & € R4

Definition 4. Let f : R? — R and the constant
og > 0. With probability 1 w.rt S, it holds that

suPgex 3 i IV Fu (@) = Vs (@)[IP] < 0.

As a preliminary step, and in conjunction with above two
definitions, we employ the stability concept outlined in Defini-
tion 1 to derive the results of the SO problem.

Theorem 1 (Convex of STORM). Let Fig be convex, E 4[||x:—
29)]] < D, witht > 0, sup, E4[f.,(A(S))] < L, VS and
Ealllvo — Vfs(xo)l?] < Ay If we choose 3 > 8L%n?, for
anyc >0, Eg 4 [F(A(S))] — F(z*) satisfies:

o (35 (e +o4+57)
L

D T
=2 4D, L3+ —).
+77T+ vn+nLly+ n)

When we choose that n =< T—2/3, b = T-2/3 and T
L=3/4n3/4, then we can obtain that Eg 4 [F(A(S))
F(z*) = O(n~/ALY4),

X
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Remark 1. Theorem 1 shows that SGD requires more it-
erations, 7' < n, to achieve a better generalization result of
O(n~'/?). This makes direct comparison with STORM chal-
lenging under different iteration regimes. To ensure fairness,
we fix the iterations to 7' = n3/*for both methods. Under this
condition, SGD achieves an excess error bound of O(n=3/8),
while STORM attains O(n~'/4). Clearly, SGD exhibits better
generalization performance in this scenario. This explains
STORM’s inferior performance compared to SGD in the con-
vex toy example (Figure 1a).

We now examine STORM in non-convex settings.

Theorem 2 (Non-convex of STORM). If Fs is

non-cowex, 1, = O(TY3),8, = O(T?/3),

sup, B4[IV/,(A(S)IP] < G2 VS and Ealllvo —
V fs(x0)|[?] < Ay, the output A(S) = x satisfies:

27
—O(\/UTT+T_1/3+ —Gn )

If T < G=9/513/5 we can obtain that Es A[F(A(S))] —
F(x*) = O(G?*/5n=1/5).

In the non-convex setting, the proof reveals that general-
ization heavily depends on the estimator’s error. A detailed
analysis of the estimator’s impact will be discussed later in the
SCO problem, which includes the SO problem.

It important to notice that both Theorems 1-2 depend on the
assumptions that function values and gradients are bounded
when the algorithm’s final output is reused as input. These
widely used assumptions [Hardt et al., 2016; Lei, 2023; Wang
et al., 2024] are automatically met by applying a projection
operator to A(.S), thus avoiding iterative projections.

In the following discussion, we will examine the SCO prob-
lem and conduct a comparative analysis of the framework and
three algorithms across both settings, focusing on the impact
of the estimator on generalization.

Es all[VE(AS)I]

5 Theoretical Analysis of SCO

When the problem involves SCO [Qi et al., 2021; Chen er al.,
2021; Wang et al., 2017; Gao and Huang, 2021], the objec-
tive function f(x) is extended into the compositional func-
tion f(g(z)). The empirical risk for SCO problems is defined
as follows: mingex Fs(z) = £ 320 fu, (55 2070 9w, (2)),
and the population risk as F'(z) := E,[f, (Eu[g.(2)])]. Due
to the difference, we need to re-define the corresponding Lips-
chitz continuity and smoothness for the SCO problem.

Definition 5. Let f : R — R% and g : R — R%. There
exist constants Ly, Lg, Cy > 0 holding the following condi-
tions:
e We say f is Lipschitz continuous, if sup, ||f.(y) —
@I < Lylly — 9ll for all y, § € R
o We say f is smoothness, if sup,, ||V f,(y) —
Ctlly — gl for all y,§ € R%.
» We say g is Lipschitz continuous, if sup,, ||g.(z) —
9o (B)]] < Lyl G

* We say g is smoothness, if sup,, || Vg, (x)
Cyllx — 2|| for all 7, % € R,

Vi@ <

— Vg (@)] <

Definition 6. Ler f : R — R% and g : R — R%. There
exist constants 04,04 > 0 holding that With probability I w.r.t
S, it holds that sup,¢ x - 327", [llgw, (%) — gs(2)|?] < oF
and sup ey o 225 (V9w (2) — Vgs(2)[?] <

With the above definitions, we can then establish the quanti-

tative relationship between Uniform Stability (i.e., Definition
2) and generalization error.

Theorem 3 (Generalization via Stability in Gradients). Let A
be e-uniformly-stable in gradients. Assume for any w and v,
the function g,,(-) and f,(-) is differentiable. Then,

Es ([ VF(A(S)) = VEs(A(S))]
e, +4C) e, + \/n1Es AV, (Vo (9(A(S))))]

+ Cpyfm 1 Es 4V (gu(A(S))].

Remark 2. Deriving the relationship between stability
and generalization for SCO algorithms in non-convex
settings presents significant technical challenges. Specif-
ically, the first term in the convex settmg decomposi-
ton s EsaE,[f,(g(AS))] — 230, fu,(9(A(S))],
as shown in [Yang er al., 2023] It can be han-
dled similarly to the non-compositional setting:
s (B L (0(AS)) = T Llo(AS)] =
Esasw [ E:L 1 (fuL ( ( (S")) = fu(9(A(S)))] <
Ly |lg (A(S%)) — g(A(S))]|- However, the cor-
responding term 1n the non-convex setting is:
2E s al[E,[V 1, (g(AS))] — 30, Vi, (g(AS)I.
Since the Euclidean norm and expectation operations cannot
be interchanged, the method for the convex setting [Yang et al.,
2023] cannot be applied. We address this by re-decomposing
the first term, inspired by [Hardt ef al., 2016].

We now consider a class of algorithms, specifically
SCO sampling-determined algorithms. Details on sampling-
determined algorithms can be found in Theorem 7 in the Ap-
pendix.

The generalization performance of the SCO framework is

formalized in the following theorem, with the outcomes for
the three algorithms summarized in Table 2.
Theorem 4 (Convex of SCO Framework). Let F's be convex,
Ealllze — 22| < Dy for any t > 0, sup,, E4[g.,(A(S))] <
L, and sup,, , Ealf,(9.,(A(S)))] < Ly, VS, for any con-
stant v > 0, define €/° .= E 4[|\ gs(z¢) 2), if the frame-
work is updated using Eq.(6), Ea[Fs(A(S)) — Fs(x?)] satis-
fies:

D2 D2 4 & L,T L;L,T
O(J P o, T gs v fhw )
nT+n+7+T;€t+ ‘S
If the framework is updated using Eq.(7), Ea[Fs(A(S)) —

Fs(x?)] satisfies:

L,T  L;L,T
— _|_ PR —
m

D? D2 4 &
o(i oy I NS s
77T+n+ . +T§ €95 4

HMH

Efller - Vs()ll*]).
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Method Setting Excess Risk B8 n
SCGD Convex D2T)t+n+n8t+ B2+ D2 Byt +L,Tn~t + L,Tm™! ()(T“g/‘l) O(T‘1/2>
Non-Convex (e T) "2 + (L3Ly + 02) T~/ + TV2G,n="/% + TCyLym™! O(T*3/4) O(T*1/2>
SCSC Convex DEnT) L+ 40287t + By Y2 + D212 4 L, Tnt + L,Tm™" O(T‘2/3> O(T‘2/3>
Non-Convex (1rT) ™2 4 (L3L4 + 02 + LL2L2)T~V/4 4+ TV2G,n /% 4 TCy Lym™ O(T*l/i‘) O(T*2/3)
COVER Convex D2T) " 4+ D22 + B+ 0P8~ + (2 + D2)(B4+ 0?8~ + L,Tn~ ' + L,Tm™! O(T*2/3> O(T’2/3>
Non-Convex npT)~ Y2+ T3 4 TV2G, n=1/2 4+ TC; Lym™! o(r-13) | o(T2/3
f

Table 1: Summary of the excess risk of the three algorithms, where 5 and 7 represent the recommended values for the parameters associated
with the algorithm’s optimal excess risk.

Problem | VR Method Setting Reference Convergence | Iteration | Bound
X SGD Convex [Hardt et al., 2016] | O(T~1/2) T=n | nt/2

SO Non-Convex [Lei, 2023] O~ V4 | T=n?3] n 1/t
/ STORM Convex Ours OT~V3) | T=nd*| p1/4
[Cutkosky and Orabona, 2019] | Non-Convex Ours OT~YV3) | T=nd5 | n71/5

Convex [Yang et al., 20231 | O(T—Y4) | T =<xn™? | n=1/2

X [Wangsectgp 2017] Ours oT—H 1 T=npt5 | p7I/5

’ Non-Convex Ours O | T=n?3 | n /o

SCO [Yang et al., 2023] | O(T~1/3) | T =xn®? | n=1/2
v [Chen'es i 2021] N Qurs O /) | T=ni” | n /2

” Non-Convex Ours OT V4 | T=n?B ] n7 1/t

- COVER Convex Ours o173y | T=n31 | p~1/1

[Qi et al., 2021] Non-Convex Ours o=y | T=n35 | n~1/5

Table 2: Summary of Theoretical Results: The risk bounds are optimized by selecting an optimal value for 7" iterations that balances the

trade-off between generalization and optimization. Here, n represents the number of samples, with smaller bounds indicating better results.

Remark 3. According to Theorem 4, using an estimator for
the gradient of the inner function in the convex setting does
not yield significant improvements. Instead, the extra term
rtn Zthl E[||vs — Vgs(2¢)]|?] suggests that such an estima-
tor may lead to worse generalization. To further investigate the
effect of the estimator on generalization, we compare the three
algorithms. SCGD and SCSC employ different estimators.

i +BD L , while for

For SCGD, the corresponding term is B +

SCSC, itis % + ﬁ + D2, /1. Although SCSC and COVER

use the same estimator, COVER additionally incorporates an
estimator for the inner function values, resulting in extra terms

such as D2(3 + %2), as summarized in Table 1. This aligns

with Theorem 4 and explains why COVER did not outperform
SCSC in the convex setting.

Remark 4. Although [Yang et al., 2023] established the ex-
cess risk for convex and strongly convex settings, it introduced
additional constraints, such as 7 < min{1/n,1/m}, which
may not always be feasible in practice. A very small learning
rate is required for large datasets, potentially leading to slow
convergence. In contrast, our analysis leverages sampling-
determined algorithms to derive a more informative excess
risk at a practical learning rate. Furthermore, we introduce
COVER, an algorithm not considered in [Yang et al., 2023].
This is significant because SCGD and SCSC differ only in
their estimator techniques. Both algorithms estimate the inner
function values, making it difficult to study the effect of the
estimator on generalization in isolation.

Accordingly, we will demonstrate the generalization per-
formance of the framework in more complex and broader
non-convex settings, as follows:

Theorem 5. Let Fs be non-convex, and E 4[|z, — x2]|] <
D, for any t > 0, sup,Eal[g.(A(S))] < Lo, and
sup,, ., Ealfo(9u(A(S)))] < v for all S. For any
Py > 0, define €9° = Eu[llgs () — ui||?] and 95 =
Eal[[Vgs(x:)—vi|?]. Denote @ = 2L302+2L2C7 -3 L7 L2,
if the framework is updated using Eq.(6), Eg o[||VF(A(S))]|]
satisfies:

PT'H €9s _|_ TG2 — + %
77TT nrT n m

LQC
9s + 0
nrT Zm&” Zm)
if the framework is updated using Eq.(7),
Es a[|VF(A(S))]|] satisfies:
PTH v TG?2 TCyL,
\/T]TT \/ (751 +epfl) + " +7m

T
ZntE +Z77tﬁvgs Znt||vt||2>~
t=1

UTT —
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Figure 2: Generalization error on SO and SCO problem under convex and non-convex settings.
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Figure 3: Generalization error varies with estimation error.

Remark 5. According to Theorem 5, the main difference

between the two is that one has the extra term 4/6 Z;‘F:l Nt

while the other has Zthl neey 9% In this case, it is difficult
to directly determine which case is more desirable. However,
by analyzing the three algorithms, we find that the error of
the COVER algorithm’s estimator is O(T~1/?), while it is
O(T /%) for both SCGD and SCSC. We also examined other
algorithms that employ the same strategy as SCGD and SCSC,
i.e., without estimating the gradient of the inner function, and
found that their estimator errors all reach O(7~/%). This sug-
gests that estimating the gradient of the inner function in the
non-convex setting further improves algorithm performance.

Remark 6. By comparing Table 2, we observe a positive
correlation between algorithms’ convergence rates and their
generalization performance. Specifically, We can find that
whether it is a SO problem or a SCO problem, and whether it
is a convex setting or a non-convex setting, algorithms with
faster convergence rates tend to exhibit superior generalization,
both in convex and non-convex settings.

6 Performance Evaluation

‘We conduct simulations to validate our theoretical results by
examining the relationship between convergence and gener-
alization. To simulate high-dimensional issues, we set the
dimension of X' to 100. We generate data using the objective
function and add Gaussian noise with mean O and variance
1 to each dimension to mimic stochastic optimization. We
use MSE loss for the convex setting and combine the tanh
activation function with MSE loss for the non-convex setting,
resulting in a total loss of MSE loss + « - tanh(ypredict), Where
a = 0.1 in both SO and SCO problems. For SO problems, we
use linear regression in both convex and non-convex settings.

For SCO problems, we generate two datasets, S; and So, with
|S1| = |S2|- The inner function g(-) fits Sy, and f(g(-)) fits
S5. We aim to minimize the overall loss of the fits on both
datasets. For iteration counts of different methods, we use the
results from Table 2 and round to the nearest integer.

For SO problems (Figures 2a and 2b), SGD outperforms
STORM in convex settings with faster convergence and bet-
ter generalization, while STORM excels in non-convex set-
tings. In the convex SCO setting (Figure 2c), SCGD con-
verges slower than SCSC and COVER, which perform simi-
larly, with SCGD also showing higher generalization error. In
the non-convex setting, COVER converges faster than SCGD
and SCSC, with Figure 2d demonstrating superior general-
ization for COVER. Overall, generalization error is lower in
convex settings for both SO and SCO, consistent with theory.

To further test the effect of estimator errors on generaliza-
tion, we conducted another set of simulation experiments.
Since each algorithm uses a different number of estima-
tors—i.e., COVER uses estimators for both the inner function
value and its gradient, while SCGD and SCSC only use es-
timators for the inner function value—we added extra noise
only to the estimators common to SCGD, SCSC, and COVER
(i.e., those for the inner function values) for fairness. From
Figure 3, it can be observed that larger estimation errors lead
to worse generalization performance.

7 Conclusion

In this paper, we systematically analyze the impact of esti-
mators on generalization. We first analyze the generalization
of STORM and compare it with SGD under the SO problem.
Later on, we propose a general framework for SCO that incor-
porates many existing popular algorithms, and then generalize
it for both convex and non-convex settings. To analyze the
non-convex setting under SCO, we also introduce a new defi-
nition of excess risk decomposition and stability in gradients.
Finally, we select three representative algorithms and perform
an analysis on them to further explore the effect of different
estimator strategies on generalization. Through our analysis,
we establish guidelines for using estimators when designing
algorithms for SCO. Specifically, in the convex setting, the
desired generalization result can be guaranteed without em-
ploying any estimator for the gradient of the inner function,
which reduces computational and storage overhead. Addi-
tionally, we identify a relationship between convergence and
generalization: algorithms with faster convergence rates tend
to exhibit better generalization performance.
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