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Abstract
Recent studies indicate that human-AI collabora-
tion performs better than either alone, particularly
in medical diagnosis. Beyond collaboration meth-
ods that focus on assigning tasks to humans or
AI, like deferral, combining human and AI de-
cisions with their confidence scores is emerging
as a promising strategy. Due to high cognitive
load, doctors often struggle to provide confidence
assessments, necessitating explicit human uncer-
tainty evaluation through a limited number of addi-
tional expert predictions. There are two challenges.
(1) how to actively collect limited yet representative
expert predictions? (2) how to accurately evaluate
human uncertainty with limited expert predictions?
To address the challenges, we propose ActiveHAI,
an active human-AI diagnosis method that reduces
expert costs through a median-window sampling
strategy that actively selects representative samples
near the estimated median; and evaluate expert con-
fidence through an evaluator module that integrates
sample features and expert predictions, converting
them into probability distributions. Experiments
on three real-world datasets show that ActiveHAI
surpasses doctor and other human-AI methods by
16.3% and 3.6% in accuracy, respectively. Further-
more, ActiveHAI reaches 97.2% relative accuracy,
even with just eight expert predictions per class.

1 Introduction
Artificial intelligence (AI) demonstrates remarkable potential
in healthcare [Rajpurkar et al., 2022], outperforming cardiol-
ogy residents in identifying 12-lead electrocardiogram abnor-
malities [Ribeiro et al., 2020]. However, AI algorithms face
challenges like out-of-domain inapplicability, bias, and lack
of interpretability [Topol, 2019]. Motivated by this observa-
tion, prior work [Yu et al., 2021; Bansal et al., 2021; Gu et al.,
2023] has explored human-AI collaboration to leverage their
complementary strengths. Beyond the methods that assign
inputs to humans or AI, like deferral [Madras et al., 2018;
Keswani et al., 2021], combining human and AI decisions

∗Corresponding author
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Figure 1: A case of human-AI diagnostic combination based on in-
dividual doctors’ additional predicted labels. Prediction Evaluation
refers to converting expert predictions into probability distributions.

is emerging as a promising strategy [Wilder et al., 2021;
Steyvers et al., 2022; Zhao et al., 2024]. Additionally, when
medical AI is accessible only as a ’locked model’ due to pri-
vacy constraints, effectively combining doctors’ predictions
with pretrained AI outputs becomes critical.

Human-AI decision-making combinations [Steyvers et al.,
2022] often require probabilistic distributions from both hu-
mans and AI. However, due to cognitive burden, asking doc-
tors to provide confidence scores for all possible labels is
impractical. Instead, additional predictions from doctors are
needed to infer these scores, but extensive expert predictions
incur high costs [Wang et al., 2024; Liu et al., 2024], limiting
the feasibility of human-AI diagnostic systems. We aim to
make accurate human-AI diagnostics with limited expert pre-
dictions. Figure 1 shows that doctor prediction is combined
with AI probabilities to generate the final diagnosis.

Existing research [Kerrigan et al., 2021; Gupta et al., 2023;
Singh et al., 2023] on combining human class-level predic-
tions with AI probabilistic outputs often leverages confusion
matrices, which quantify the relationship between expert pre-
dictions and ground truth labels. However, constructing con-
fusion matrices requires substantial expert predictions to ac-
curately estimate probabilities, which is time-consuming and
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costly, especially for large-scale medical imaging [Willemink
et al., 2020; Alzubaidi et al., 2021]. Recent work [Hemmer
et al., 2023; Mozannar et al., 2023; Dvijotham et al., 2023;
Alves et al., 2024] on human-AI collaborative diagnosis has
considered the constraints of limited expert predictions, us-
ing a small number of predictions to identify doctors’ spe-
cific strengths. However, these studies primarily focus on
deferring tasks to experts, overlooking the probabilistic dis-
tribution of expert predictions.

To improve the accuracy of human-AI diagnosis with lim-
ited human prediction labels, there are two challenges. First,
given the high cost of inviting experts to predict samples that
accurately represent their abilities, how can we design a strat-
egy to collect a limited yet representative subset of expert pre-
dictions actively? Second, existing methods perform poorly
when the number of available expert predictions is limited,
how can we design an efficient method to evaluate human
prediction probability distributions with limited predictions?
To address these challenges, we propose two solutions: (i)
For the first challenge, we introduce a median-window based
active collection strategy. This strategy iteratively selects rep-
resentative samples near the median of the estimated values
and provides expert samples for prediction, thus reducing the
cost of expert annotations on medical samples. (ii) For the
second challenge, we propose an evaluator module that inte-
grates sample features and expert predictions. This module
combines the feature vectors from the pretrained AI with the
encoded expert prediction vectors, enabling the evaluation of
probability distributions with limited expert predictions.

In this paper, we propose ActiveHAI, an active collec-
tion based human-AI diagnostic combination method that en-
hances diagnostic accuracy with limited expert predictions.
First, we use the proposed median-window sampling method
to actively select samples for expert predictions, iteratively
generating fully labeled data. Second, we train the evaluator
module using data that includes expert predictions and ground
truth labels, enabling improved evaluation by jointly encod-
ing sample features and expert predictions. Finally, we com-
bine the human prediction probability distributions generated
by the evaluator module with the pretrained AI’s probabilistic
outputs to compute joint probabilities, ultimately producing
the final human-AI combined prediction.

Our main contributions are as follows:

• Active Collection: We propose the median-window ac-
tive collection algorithm to actively select expert predic-
tions for human-AI diagnosis, enabling efficient evalua-
tion of human prediction probability distributions.

• Human Prediction Evaluation: We propose an evalua-
tor module that enhances the ability to transform expert
predictions into probability distributions by leveraging
pretrained feature layers and prediction embeddings.

• Experiment Study: Experiments on three real-world
datasets show that the proposed method outperforms in-
dividual human and other human-AI collaboration meth-
ods by 16.3% and 3.6% in diagnosis accuracy, respec-
tively. For reproducibility, we release the code and data
in https://github.com/mercyzi/ActiveHAI.git.

2 Related Work
2.1 Medical Diagnosis with Limited Labels
Researchers have explored various techniques to improve pre-
dictions in data-scarce scenarios. For instance, [Hemmer et
al., 2023] utilized semi-supervised learning to generate artifi-
cial labels with limited annotations, enabling deferred learn-
ing. [Chae and Kim, 2023] applied transfer learning in med-
ical image analysis to enhance accuracy with small medical
datasets. [Kotia et al., 2021] focused on few-shot learning to
learn effective feature representations from a limited number
of labeled samples in medical imaging. However, these ap-
proaches often rely on large amounts of unlabeled data and
domain similarity, which may not always be feasible in real-
world medical applications.

In contrast, active learning methods [Liu et al., 2020;
Budd et al., 2021] aim to efficiently identify the most in-
formative subsets of unlabeled samples, thus enabling more
effective training of AI models and reducing the expensive
annotation burden typically associated with medical image
data. For example, [Tang et al., 2023] employed active learn-
ing to tackle label scarcity, achieving more accurate identi-
fication of gastrointestinal diseases. [Zhang et al., 2024a]
proposed an interactive image annotation framework that im-
proves prostate MRI image segmentation accuracy with fewer
interactive annotations. However, few studies have explored
how to actively select limited expert predictions in order to
evaluate human expert capabilities effectively.

2.2 Human-AI Collaborative Diagnosis
In human-AI collaborative classification [Fragiadakis et al.,
2024], humans and AI systems collaborate and complement
each other to tackle more complex tasks. It is primarily di-
vided into Learning to Defer (L2D) and Learning to Com-
bine (L2C) [Zhang et al., 2024b]. L2D [Madras et al., 2018;
Hemmer et al., 2022; Dvijotham et al., 2023] refers to as-
signing the final decision to either the expert or the AI. For
example, [Mozannar and Sontag, 2020] proposed a frame-
work based on classifiers and rejectors that defers the deci-
sion on chest X-rays to experts. [Verma and Nalisnick, 2022]
introduced a calibrated L2D system that defers diagnosing
skin lesions to experts. [Mao et al., 2024] extended the L2D
model to multiple medical experts.

In this paper, we focus on L2C, which combines AI and
human predictions for the final diagnosis, ensuring higher ac-
curacy by leveraging the complementary strengths of both
systems and capturing information that machines may miss
[Groh et al., 2022]. For example, [Kerrigan et al., 2021] de-
veloped an algorithm that combines human predictions with
machine model probabilities, improving accuracy and relia-
bility. [Steyvers et al., 2022] proposed a Bayesian frame-
work that uses varying confidence scores, demonstrating that
a hybrid human-AI combination outperforms either predic-
tion type individually. [Gupta et al., 2023] combined cali-
brated model probabilities with expert predictions, improv-
ing the alignment of model outputs with expert predictions.
However, these studies do not address the limited availabil-
ity of expert-predicted labels in the medical field, which may
lead to suboptimal accuracy in human-AI diagnosis.
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3 Problem Formulation
In this section, we consider human-AI decision combination
in medical diagnosis tasks. For a given medical instance x ∈
X , we assume that we have access to the probability vector
ph(x) ∈ Ph predicted by a human expert and the probability
vector pa(x) ∈ Pa predicted by a pretrained AI model. The
goal is to accurately predict the true label y ∈ Y = {1, ...,K}
with K denoting the number of classes. Based on Bayesian
theory, assuming that the predictions ph(x) and pa(x) are
conditionally independent, we compute their joint probabil-
ity using the product rule. Similar to [Kerrigan et al., 2021],
we represents the prediction probability of class j as:

p(y = j|ph(x), pa(x)) =
ph(x)j · pa(x)j∑K

k=1 (ph(x)k · pa(x)k)
, (1)

where ph(x)j and pa(x)j represent the prediction probabili-
ties of class j by humans and AI, respectively.

However, it is infeasible in practice to directly obtain
ph(x), and it is costly for doctors to evaluate confidence levels
when making predictions. Our premise for human-AI collab-
oration is to train an evaluator module E : X × H → Ph

that models the probability distribution of individual doctor
predictions h ∈ H = {1, . . . ,K}. Rather than directly con-
verting h into a one-hot encoding, we use historical expert
prediction data to fit a more fine-grained probability distribu-
tion. The capabilities of individual doctors vary across differ-
ent disease feature spaces, and ground-truth labels in medical
diagnosis datasets typically require consensus among multi-
ple experts. For example, three expert pathologists indepen-
dently annotate the slides in a colon slide dataset [Zhu et al.,
2021], and the consistent results are used as the true labels.
Therefore, doctors collaborating with AI models need to pro-
vide additional self-predictions to train the evaluator module
for distribution fitting.

We define the binary data containing medical instances
and the ground-truth labels as Du = {(xi, yi)}K·u

i=1 , and
the ternary data that additionally includes human expert pre-
dictions as Dl = {(xi, yi, hi)}K·l

i=1. Here, l represents the
number of samples with human predictions for each class,
u = n−l denotes the remaining number of samples per class,
and n is the total number of samples in each class. Acquiring
individual expert predictions incurs additional costs and hu-
man effort, particularly in the medical domain. Therefore, we
consider achieving efficient human-AI diagnostic collabora-
tion at a lower cost by evaluating the predictive probability
distribution under a limited number of expert predictions l.
The goal is to leverage the distribution derived from limited
expert predictions l to approximate the distribution of full ex-
pert predictions n, thereby enabling a more accurate human-
AI diagnostic combination.

In this study, the network parameters of the pretrained AI
model M : X → Pa are fixed, and we redefine the human-AI
combination probability of class j as:

p(y = j|x, h) = Eθ(x, h)j ·M(x)j∑K
k=1 (Eθ(x, h)k ·M(x)k)

, (2)

where Eθ(x, h) and M(x) represent the outputs of the pro-
posed evaluator module and the AI model, respectively, and
θ denotes the trainable parameters of the evaluator module.

Data without Expert Labels

Random
Sampling

Evaluator
Module

Window
Sampling

Median-Window Sampling

Fully Labeled Data

Doctor

Remove

Retrain

Query

UpdateSelect

Figure 2: Iteratively collect human predictions via median-window
active collection. The red dashed line indicates that each iteration
will train the evaluator module with new, fully labeled data.

4 Approach
In this section, we describe the proposed method for fitting
the probability distribution using limited expert predictions.
The approach consists of two main parts: (1) collecting rep-
resentative limited expert predictions to construct the fully la-
beled data Dl; (2) training the proposed evaluator module on
Dl to fit the probability distribution of the expert predictions.

4.1 Active Collection of Human Predictions
The first component of our method is the active selection
of samples for annotation by medical experts. By selecting
the most representative data samples, we effectively train the
evaluator module to reduce the cost of expert predictions.

In active learning, the algorithm selects the most infor-
mative data samples to train AI models and efficiently re-
duce labeling costs. Unlike traditional active learning ap-
proaches: (1) They involve human annotation for samples
with unknown true labels, whereas, in our task, the true la-
bels of all samples are known. (2) Their goal is to improve
the performance of the AI model itself. In contrast, our goal
is to enhance the performance of the evaluator to estimate
the human predictive probability distribution better. To this
end, we propose a novel sample collection strategy, Median-
Window Active Collection (MWAC), to collect predictions
from medical experts.

As shown in Figure 2, we iteratively collect human pre-
dictions. Through median-window sampling, a subset of
samples from Du is selected for expert annotation, gener-
ating a new fully labeled dataset Dl. Furthermore, the up-
dated Dl from each iteration is used as training data for the
evaluator module, which is retrained and utilized in subse-
quent median-window sampling iterations. Specifically, the
median-window sampling consists of three primary steps: (1)
Random Sampling: Since disease diagnosis is a multi-class
problem, we aim to uniformly evaluate the predictive proba-
bility distribution of experts across different classes. To this
end, we uniformly and randomly sample N samples per class
from Du. (2) Estimation Generation: For the N samples in
each class, in order to select the most representative samples,
we use the evaluator module to calculate the estimates ei:

ei =
∣∣∣E(xi, h̃i)h̃i

− 0.5
∣∣∣ , (3)
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Algorithm 1: Median-Window Active Collection
Input: Du: data without expert labels.

Niter: number of active learning iterations.
l: number of human predictions for each class.
QueryExpert: ask expert to label samples.
TrainEvaluator: train the evaluator module.

Output: Dl: fully labeled data after active learning.
1 Initialization:
2 for k ← 1 to K do
3 Randomly choose l1 samples for class k from Du.
4 L1 ← QueryExpert(l1).
5 Add L1 to Dl, and remove samples from Du.

6 E ← TrainEvaluator(Dl).
7 for n← 2 to Niter do
8 for k ← 1 to K do
9 Randomly choose N samples for k from Du.

10 {(xi, ei)}Ni=1 ← Estimate(N , E).
11 Sort [(xi, ei)]

N
i=1 by ei in descending order.

12 Construct median-window [Ws,Ws +Wl].
13 Randomly choose ln samples from window.
14 Ln ← QueryExpert(ln).
15 Add Ln to Dl, and remove samples from Du.

16 E ← TrainEvaluator(Dl).

17 return Dl.
18 Function Estimate(N , E):
19 S ← ∅ .
20 for each instance xi, yi from N do
21 h̃i ← yi.

22 ei ←
∣∣∣E(xi, h̃i)h̃i

− 0.5
∣∣∣.

23 S ← S ∪ {(xi, ei)}.
24 return S.

where, h̃i = yi assumes that expert predictions align with
the ground truth labels, and E(xi, h̃i)h̃i

denotes the proba-
bility output of the evaluator module for the pseudo expert
prediction h̃i category. (3) Window Sampling: We rank the N
samples in descending order based on their estimated values
and construct a window with a starting index Ws and a length
Wl. This window corresponds to the interval [Ws,Ws +Wl]
within the ordered sample list [0, N ]. The MWAC algorithm
is described in detail in Algorithm 1.

Since the estimated value e is defined as the absolute differ-
ence between the probability output by the evaluator for the
true label and 0.5, the closer this probability is to 1 or 0, the
larger the estimated value e. This reflects an extreme estima-
tion of human predictions. Conversely, when the probability
is closer to 0.5, the estimated value becomes smaller, repre-
senting a more ambiguous estimation of human predictions.
We argue that the median of the estimated values better repre-
sents the collective characteristics of the sample set, enabling
a more reasonable estimation of human predictions, which is
validated in the experimental section. Therefore, we select
the sampling window’s starting index Ws based on the esti-

AI Model

Feature Layer FC Layer

Feature Layer FC Layer

Embedding Layer

Evaluator Module
Doctor

Fully Labeled Data

TrainingFrozen Forward Hadamard Product

Prediction

Figure 3: Human-AI decision combination based on proposed eval-
uator module. The human-AI collaborative decision-making pro-
cess is achieved by calculating the joint distribution of the human
prediction probability distribution and the AI prediction probability
distribution, where the human prediction probability distribution is
estimated using the evaluator module.

mated values’ median. Finally, we perform sampling within
this window to obtain a limited number of expert predictions.

4.2 Design of Evaluator Module
As shown in Figure 3, for a medical instance with features
x, expert doctors and the AI model independently provide
predicted labels and probabilities. The evaluator module pro-
cesses the expert’s predicted label to generate a probability
distribution, and the final human-AI collaborative prediction
ŷ is computed using Equation (2). The proposed evaluator
module is designed to assess the probability distribution of
doctors’ decisions, represented as a probability vector over
multiple categories.

Existing methods for combining human predictions and AI
probabilities usually rely on confusion matrices, which quan-
tify the alignment between expert predictions and ground
truth labels. However, their reliability declines with limited
annotations. To address this, we propose an evaluator module
integrating expert predictions with sample features, enabling
robust evaluation in scenarios with fewer annotations. Specif-
ically, in the evaluator module, we first extract feature vectors
from instance x using a feature layer:

fx = FeatureLayer(x; θx), (4)

where θx is the feature layer parameter from the pretrained
AI model. Then, we pass the human prediction h through the
embedding layer to obtain the embedding vector:

fh = EmbeddingLayer(h; θh), (5)

where θh is the embedding layer parameter. Finally, the fea-
ture vector and embedding vector are added together and then
passed through a linear layer to obtain the final human predic-
tion probability distribution:

E(x, h) = Softmax(LinearLayer(fx + fh; θl)), (6)
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where θl is the linear layer parameter. We can train the eval-
uator module by calculating the cross entropy loss between
human-AI combination prediction ŷ and true labels y:

L = −
K·l∑
i=1

yi log(pθ(y = ŷi|xi, hi)), (7)

where θ represents the set of θh and θl, excluding θx, as the
feature layer network parameters are fixed.

5 Experiments
In this section, we conduct extensive experiments on real-
world medical diagnosis datasets to evaluate our method.

5.1 Experimental Settings
Datasets. We extensively evaluate the proposed method on
three datasets: MZ-10 [Chen et al., 2023], DR-5 [Ju et al.,
2022], and Chaoyang-3 [Zhu et al., 2021]. MZ-10 is a med-
ical consultation dataset, while Chaoyang-5 and DR-3 are
medical imaging datasets.

MZ-10: A large-scale corpus for evaluating medical con-
sultation systems. This dataset covers 331 symptoms and 10
pediatric diseases. As the dataset lacks doctor-predicted la-
bels, we artificially generate three sets of expert prediction
labels (D1, D2, and D3) to represent doctors with varying
levels of expertise. For each set of artificial expert labels, we
sample probabilities P from a uniform distribution with mean
a, where a denotes overall accuracy and P represents accu-
racy for each class. Given the machine model’s accuracy of
0.69, we set a to 0.65, 0.7, and 0.75 to simulate doctors with
expertise slightly below, equal to, and above the AI model.

DR-5: A diabetic retinopathy dataset with five grading la-
bels. It includes prediction labels from multiple ophthalmol-
ogists, and we select the ophthalmologist who provides the
most significant number of expert predictions. Due to the
limited number of samples for proliferative diabetic retinopa-
thy, we randomly sample 200 samples from each category to
ensure sufficient representation and unbiased evaluation.

Chaoyang-3: A colon slide dataset from Chaoyang Hospi-
tal, with prediction labels from the expert pathologist. Our
study does not consider the diagnosis of adenocarcinoma, as
the prediction accuracy for adenocarcinoma samples by ex-
perts approaches 100%, which limits the complementarity of
human-AI collaboration in this category. We randomly sam-
ple 600 slides from each of the other three categories (normal,
serrated, and adenoma).
Baselines. We compare our proposed ActiveHAI with the
three following baselines:

CM [Kerrigan et al., 2021; Gupta et al., 2023; Singh et al.,
2023]: A human-AI decision combination method that evalu-
ates the probability distribution of human predictions using a
confusion matrix, followed by Bayesian fusion of human and
AI probabilities.

PCM [Hemmer et al., 2023]: A method that generates
pseudo-human predictions to extend the confusion matrix,
enabling a similar human-AI decision combination as CM.

Collab [Zhang et al., 2024b]: A human-AI decision combi-
nation method that directly combines human predictions and
AI probabilities through a collaboration module.
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Figure 4: KL divergence under l human expert predictions for our
method and the confusion matrix method on three datasets. For MZ-
10, we present results on D1.

Metrics. We use two widely used metrics to evaluate the pro-
posed method’s performance: accuracy and KL divergence.
Accuracy measures the overall performance of the human-AI
combination, while KL divergence quantifies the difference
between the human probability distribution under limited pre-
dictions and the distribution under all predictions, thus evalu-
ating the quality of the probability distribution fitting.

Implementation Details. We implement ActiveHAI using
PyTorch on a single NVIDIA 3090 GPU. For the feature
layer, we employ a two-layer Transformer [Vaswani et al.,
2017] encoder for MZ-10, and a pretrained EfficientNet-B1
[Tan and Le, 2019] model for DR-5 and Chaoyang-3. The
embedding layer dimension is set to 512. The evaluator mod-
ule is trained for 100 epochs using the Adam optimizer with
a learning rate of 3× 10−4. For MZ-10, we sample the prob-
ability P ten times for each set of artificial expert predictions,
repeating each sampling experiment five times. For DR-5 and
Chaoyang-3, we perform five-fold cross-validation, repeating
each fold ten times.

We consider the following numbers of expert predictions:
l ∈ {3, 4, 5, 6, 7, 8,All}. Initially, the number of expert pre-
dictions is set to 2, and it increases by 1 in each iteration.
The random sampling size N is set to 100, and the median-
window length Wl is set to 5. For D1, D2, and D3 in MZ-10,
the window starting points Ws are set to 65, 50, and 50, re-
spectively. For DR-5, Ws is set to 55, and for Chaoyang-3,
Ws is set to 50.
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l 3 4 5 6 7 8 All

D1

AI 68.81 (±0.50) 68.81 (±0.50) 68.81 (±0.50) 68.81 (±0.50) 68.81 (±0.50) 68.81 (±0.50) 68.81 (±0.50)
Human 65.79 (±0.92) 65.79 (±0.92) 65.79 (±0.92) 65.79 (±0.92) 65.79 (±0.92) 65.79 (±0.92) 65.79 (±0.92)
CM 76.27 (±2.17) 76.09 (±1.84) 76.42 (±1.30) 76.45 (±1.42) 76.60 (±1.38) 76.85 (±1.27) 84.57 (±1.18)
PCM 72.36 (±2.00) 73.27 (±1.82) 74.08 (±1.71) 74.59 (±1.60) 75.03 (±1.53) 75.37 (±1.60) 84.57 (±1.18)
Collab 72.88 (±2.35) 74.83 (±2.30) 76.55 (±1.95) 77.59 (±1.60) 78.37 (±1.68) 78.98 (±1.45) 82.41 (±1.15)
ActiveHAI (Ours) 79.84 (±1.65) 80.56 (±1.73) 81.15 (±1.74) 81.42 (±1.60) 81.70 (±1.52) 81.88 (±1.44) 83.92 (±1.24)

w/o MWAC 78.24 (±2.35) 78.98 (±2.10) 79.75 (±1.93) 80.07 (±1.71) 80.51 (±1.65) 80.86 (±1.52) 83.92 (±1.24)
w/o EM 77.40 (±1.40) 77.07 (±1.32) 76.70 (±1.19) 76.25 (±1.13) 75.94 (±1.25) 75.70 (±1.29) 84.57 (±1.18)

D2

Human 70.67 (±1.00) 70.67 (±1.00) 70.67 (±1.00) 70.67 (±1.00) 70.67 (±1.00) 70.67 (±1.00) 70.67 (±1.00)
CM 79.52 (±2.83) 79.67 (±2.34) 79.39 (±2.14) 79.40 (±1.80) 79.28 (±1.67) 79.55 (±1.48) 86.29 (±1.29)
PCM 75.85 (±2.05) 76.50 (±1.79) 76.91 (±1.88) 77.47 (±1.66) 77.88 (±1.61) 78.15 (±1.48) 86.29 (±1.29)
Collab 75.92 (±3.23) 77.90 (±2.43) 78.84 (±2.21) 79.79 (±1.93) 80.31 (±1.85) 80.75 (±1.77) 84.14 (±1.08)
ActiveHAI (Ours) 81.64 (±2.04) 82.73 (±1.71) 83.30 (±1.64) 83.55 (±1.50) 83.77 (±1.33) 83.84 (±1.41) 85.55 (±1.20)

w/o MWAC 80.66 (±2.20) 81.40 (±1.88) 81.68 (±2.01) 82.04 (±2.09) 82.25 (±1.94) 82.56 (±1.85) 85.55 (±1.20)
w/o EM 80.55 (±2.03) 80.21 (±1.74) 79.78 (±1.70) 79.36 (±1.74) 79.06 (±1.57) 78.72 (±1.50) 86.29 (±1.29)

D3

Human 75.70 (±1.11) 75.70 (±1.11) 75.70 (±1.11) 75.70 (±1.11) 75.70 (±1.11) 75.70 (±1.11) 75.70 (±1.11)
CM 82.85 (±2.89) 82.44 (±2.76) 82.60 (±1.86) 82.59 (±1.68) 82.59 (±1.69) 82.77 (±1.65) 88.14 (±1.42)
PCM 79.51 (±1.50) 80.00 (±1.60) 80.44 (±1.59) 80.75 (±1.65) 81.06 (±1.64) 81.20 (±1.56) 88.14 (±1.42)
Collab 79.17 (±2.73) 80.35 (±2.52) 81.56 (±2.08) 82.30 (±2.06) 82.73 (±1.85) 83.13 (±1.85) 86.12 (±1.49)
ActiveHAI (Ours) 83.90 (±2.56) 84.92 (±2.27) 85.27 (±2.06) 85.70 (±1.90) 85.83 (±1.82) 85.99 (±1.85) 87.78 (±1.65)

w/o MWAC 82.90 (±3.40) 83.50 (±2.97) 83.87 (±2.82) 84.22 (±2.62) 84.64 (±2.28) 84.92 (±2.14) 87.78 (±1.65)
w/o EM 83.51 (±2.16) 83.36 (±1.67) 82.97 (±1.62) 82.58 (±1.63) 82.18 (±1.55) 81.94 (±1.55) 88.14 (±1.42)

Table 1: Diagnosis accuracy under different numbers of l human expert predictions for the synthetic experts D1, D2, and D3 on MZ-10.
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Figure 5: Effect of the median-window parameters Ws and Wl in diagnosis accuracy on three datasets. For MZ-10, we present results on D1.

5.2 Overall Performance
We present the accuracy performance of the human-AI di-
agnosis combination models on the MZ-10, DR-5, and
Chaoyang-3 datasets in Tables 1, 2, and 3, respectively.
Overall, when the number l ≤ 8 of human expert predic-
tions, the proposed ActiveHAI method outperforms all base-
line methods in diagnosis accuracy. Specifically, the re-
sults show that when l ≤ 8, our method achieves an av-
erage accuracy improvement of 17.8% (on MZ-10), 14.8%
(on DR-5), and 13.2% (on Chaoyang-3) compared to human
predictions. Moreover, our method also surpasses existing
human-AI combination models by 4.6% (on MZ-10), 1.5%
(on DR-5), and 2.8% (on Chaoyang-3) under the same con-
ditions. These results highlight the significant advantage of
our method under limited human predictions. Furthermore,

when l = All, our method achieves accuracy comparable to
other approaches, demonstrating its ability to maintain per-
formance under complete human predictions.

Figure 4 shows the performance of human prediction
probability distribution fitting for varying numbers of avail-
able human expert predictions on the MZ-10, DR-5, and
Chaoyang-3 datasets. Since Collab directly combines human
predictions with AI probabilities, these results highlight the
quality differences between our method, CM, and PCM in
converting human predictions into probability distributions.
On the MZ-10 dataset, our ActiveHAI method reduces KL
divergence by an average of 66.9% and 77.9% compared to
CM and PCM, respectively, under limited expert predictions.
On the DR-5 dataset, ActiveHAI reduces KL divergence by
an average of 79.8% and 52.3% compared to CM and PCM,
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l 3 4 5 6 7 8 All

AI 48.90 (±0.86) 48.90 (±0.86) 48.90 (±0.86) 48.90 (±0.86) 48.90 (±0.86) 48.90 (±0.86) 48.90 (±0.86)
Human 51.80 (±1.08) 51.80 (±1.08) 51.80 (±1.08) 51.80 (±1.08) 51.80 (±1.08) 51.80 (±1.08) 51.80 (±1.08)
CM 53.81 (±4.69) 55.41 (±4.21) 56.70 (±3.54) 57.76 (±3.24) 58.44 (±3.21) 58.42 (±3.10) 62.60 (±1.74)
PCM 57.72 (±4.39) 58.27 (±3.43) 58.70 (±5.40) 58.52 (±4.47) 59.14 (±3.45) 59.13 (±3.32) 62.60 (±1.74)
Collab 51.01 (±4.85) 53.67 (±4.80) 55.62 (±4.30) 56.93 (±2.97) 57.88 (±2.90) 57.92 (±3.08) 63.72 (±2.32)
ActiveHAI (Ours) 58.03 (±3.82) 59.27 (±3.19) 59.53 (±3.13) 59.86 (±2.92) 60.02 (±2.86) 59.98 (±2.79) 62.39 (±2.31)

w/o MWAC 56.13 (±4.53) 57.62 (±3.87) 58.35 (±3.96) 59.18 (±3.38) 59.63 (±2.99) 59.77 (±3.09) 62.39 (±2.31)
w/o EM 55.63 (±3.91) 56.91 (±3.89) 56.87 (±3.95) 56.99 (±3.65) 57.38 (±3.48) 59.50 (±3.13) 62.60 (±1.74)

Table 2: Diagnosis accuracy under different numbers of l human expert predictions on DR-5.

l 3 4 5 6 7 8 All

AI 68.28 (±1.37) 68.28 (±1.37) 68.28 (±1.37) 68.28 (±1.37) 68.28 (±1.37) 68.28 (±1.37) 68.28 (±1.37)
Human 64.72 (±0.70) 64.72 (±0.70) 64.72 (±0.70) 64.72 (±0.70) 64.72 (±0.70) 64.72 (±0.70) 64.72 (±0.70)
CM 69.02 (±6.10) 70.05 (±5.59) 71.27 (±3.73) 72.03 (±3.36) 72.32 (±3.20) 73.03 (±2.97) 76.00 (±1.51)
PCM 69.96 (±4.50) 70.29 (±3.94) 70.26 (±4.30) 71.00 (±4.26) 71.27 (±4.28) 71.28 (±4.29) 76.00 (±1.51)
Collab 66.39 (±5.51) 68.42 (±4.98) 69.12 (±4.53) 70.03 (±4.28) 71.27 (±3.87) 70.76 (±3.65) 76.41 (±1.29)
ActiveHAI (Ours) 72.20 (±3.36) 72.22 (±3.55) 73.30 (±2.78) 73.57 (±2.72) 73.90 (±2.65) 74.34 (±2.47) 77.06 (±1.64)

w/o MWAC 71.30 (±3.54) 71.86 (±3.70) 72.63 (±2.96) 73.26 (±2.78) 73.48 (±2.90) 73.96 (±3.10) 77.06 (±1.64)
w/o EM 69.45 (±4.85) 70.82 (±4.02) 72.05 (±3.11) 72.31 (±2.65) 72.73 (±2.65) 73.27 (±2.11) 76.00 (±1.51)

Table 3: Diagnosis accuracy under different numbers of l human expert predictions on Chaoyang-3.

respectively. On the Chaoyang-3 dataset, ActiveHAI reduces
KL divergence by an average of 62.7% and 56.8% compared
to CM and PCM, respectively. These results indicate that our
method significantly improves the effectiveness of fitting dis-
tributions under limited expert predictions.

5.3 Ablation Study
We conduct a series of ablation studies to validate the ef-
fectiveness of each component of our method. First, we in-
troduce the MWAC algorithm to select limited samples for
human prediction actively. Second, we propose the evalua-
tor module to transform human predictions into probability
distributions. Tables 1, 2, and 3 demonstrate that both the
MWAC algorithm and the evaluator module improve the ac-
curacy of the human-AI diagnostic combination when l ≤ 8.
When the active collection strategy is replaced by random
collection for obtaining human predictions, the accuracy de-
creases, particularly by 1.8% when l = 3. This result val-
idates the effectiveness of the MWAC algorithm. Similarly,
without the evaluator module and relying on the existing con-
fusion matrix method, the accuracy drops significantly, high-
lighting the importance of the evaluator module.

5.4 Effect of Parameters Ws and Wl in
Median-Window

We use median-window sampling to implement the MWAC
algorithm. Ws represents the starting position of the win-
dow, which defines the candidate sample interval. If Ws is
close to 0 or N , the window primarily selects samples with
extreme or ambiguous estimates. Conversely, if Ws is close to
N/2, the window primarily selects samples near the median
of the estimated values. Wl defines the size of the window.
To assess the effect of the median-window on the accuracy
of ActiveHAI across the three datasets, we set N = 100
and adjust Ws ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90} and

Wl ∈ {5, 10, 15, 20, 25, 30}. The results are shown in Fig-
ure 4. The results indicate that as Ws increases, diagnostic
accuracy initially improves, reaching a peak in the range of
40 to 70, and then decreases. In contrast, diagnostic accu-
racy declines as Wl increases. This aligns with our intuition
that, under limited human predictions, selecting samples near
the median of estimated values for human prediction eval-
uation improves distribution fitting and enhances the accu-
racy of human-AI collaborative diagnosis. Moreover, for dif-
ferent numbers of predictions l, the impact of Ws and Wl

on accuracy remains consistent. This consistency suggests
that the proposed median-window sampling method applies
to various scenarios involving limited expert predictions and
demonstrates a degree of generalization capability.

6 Conclusion
In this paper, we propose ActiveHAI, a human-AI diagnos-
tic combination method designed to improve diagnostic ac-
curacy with limited expert predictions. Through median-
window active collection, we efficiently select human pre-
dictions, and our evaluator module enhances the evaluation
of human predictions by integrating expert predictions with
sample features. Experimental results on three real-world
datasets demonstrate that ActiveHAI outperforms individual
doctor performance and other human-AI collaboration meth-
ods. This method provides a promising solution for scenar-
ios with high expert prediction costs and limited human re-
sources, enhancing the potential of human-AI diagnosis.

Ethical Statement
We train a model in medical diagnosis to assess expert predic-
tion probability distributions, aiming to improve the accuracy
of human-AI diagnostic combinations. A broader contribu-
tion of this work is the proposed active collection strategy that
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selects limited representative samples to evaluate the proba-
bility distributions of doctors’ decisions efficiently. The ap-
proach could theoretically be used to estimate the capabilities
of individual expert doctors in disease diagnosis. However,
real-world deployments must undergo training on larger-scale
real-world data for ethical considerations. AI models learned
from insufficient and incomplete medical datasets may pose
considerable prediction risks. It is important to note that the
public datasets used in our experiments have had all patient
privacy-related information meticulously removed.
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