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Abstract
Transductive learning is a popular setting in statis-
tic learning theory, reasoning from observed, spe-
cific training cases to specific test cases, which has
been widely used in many fields such as graph neu-
ral networks and semi-supervised learning. Exist-
ing results provide fast rates of convergence based
on the traditional local techniques, which need the
surrogate function that upper bounds the uniform
error within a localized region to be “sub-root”. We
derive new version of concentration inequality for
empirical processes in transductive learning and ap-
ply generic chaining technique to relax the assump-
tions and gain tighter results in empirical risk mini-
mization. Furthermore, we concentrate on the gen-
eralization of moment penalization algorithm. We
design a novel estimator based on the second mo-
ment (variance) penalization and derive its learning
rates, which is the first theoretical generalization
analysis considering variance-based algorithms.

1 Introduction
Transductive learning is an important setting in statistic learn-
ing theory that has been widely used in many fields such
as graph neural networks (GNNs) [Oono and Suzuki, 2020;
Chien et al., 2020; Esser et al., 2021; Cong et al., 2021;
Tang and Liu, 2023b] and semi-supervised learning [Li et
al., 2021]. Different from sampled independent and identi-
cally distributed with replacement (i.i.d.), training examples
in transductive learning settings are sampled independent and
without replacement from a finite population and our goal is
to reason from observed, specific training cases to specific
test cases.

Theoretically, current issues regarding transduction learn-
ing remain understudied. Some works for transductive er-
ror bounds have been presented in transduction learning such
as complexity-based bounds [Vapnik, 1982; Vapnik, 1999;
El-Yaniv and Pechyony, 2009; Cortes and Mohri, 2006;
Tolstikhin et al., 2014], stability-based bounds [El-Yaniv
and Pechyony, 2006; Cortes et al., 2009], information the-
ory [Tang and Liu, 2023a] and PAC-Bayesian bounds [Blum

∗Corresponding author.

and Langford, 2003; Derbeko et al., 2004; Bégin et al.,
2014]. There are some works [Blum and Langford, 2003;
Cortes and Mohri, 2006] which consider the special case
where the Bayes hypothesis has zero and is contained in the
hypothesis class. But this assumption is clearly too restrictive
in practice, where the Bayes hypothesis usually can not be as-
sumed to be contained in the class. In fact, most results do not
provide fast rates of convergence in the general transductive
setting.

It is worth mentioning that [Tolstikhin et al., 2014] pro-
vided the general fast rates of convergence in transduc-
tion learning based on the traditional local technique given
by [Bartlett et al., 2005]. However, this local technique re-
quires the surrogate function (see Definition 4) ψm to be
“sub-root”, which might not be necessary. On the other hand,
the Bernstein condition is also needed to derive the final re-
sults.

In this paper, we use functional technique to peeling the hy-
pothesis space. Our novel peeling method does not rely on the
“sub-root” assumption of the surrogate function or the Bern-
stein assumption of the loss function. We elaborate in detail
that the results obtained by our peeling method will not be
worse than those obtained by existing methods. Furthermore,
under two common assumption hypothesis spaces: classes of
polynomial growth and VC classes, we have obtained tighter
bounds compared to the best results [Tolstikhin et al., 2014]
that have already been obtained. In addition, our results can
also be bounded by empirical excess losses, which, to our
knowledge, is the first estimating the risk bounds in transduc-
tive learning.

Finally, we employ this novel functional based peeling
technique to design a moment-penalized based estimator that
considering the variance information. To the best of our
knowledge, generalization results for algorithms that consider
variance information have not been discussed in transduction
learning.

Our contribution can be summarized as follow:
1. We use novel functional based peeling technique to

derive better uniform localized convergence upper bounds
in transductive learning without “sub-root” assumption and
Bernstein condition.

2. For non-parametric classes of polynomial growth
and VC classes, our results for empirical risk minimization
(ERM) exhibit the improvement relative to the previous re-
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sults [Tolstikhin et al., 2014] in some cases. We also ob-
tain the risk bounds from empirical data instead of population
data.

3. We design the moment-penalized estimator in transduc-
tive learning and provide the generalization bounds for this
variance-dependent algorithm, which have not bee discussed
before.

2 Related Work
The concentration inequalities for the supremum of the stan-
dard empirical process for sampling with replacement have
been well studied in the literature including Talagrand’s in-
equality [Talagrand, 1996] and its versions due to [Bous-
quet, 2002a; Bousquet, 2002b] and Section 12 of [Boucheron
et al., 2013]. For transductive learning, we need a mod-
ified version on concentration inequalities for the supre-
mum of the empirical process for sampling without replace-
ment [Cortes and Vapnik, 1995; Tolstikhin et al., 2014].
Some works for error bounds have been presented based
on these inequalities such as [Vapnik, 1982; Vapnik, 1999;
Blum and Langford, 2003; Derbeko et al., 2004; El-Yaniv
and Pechyony, 2009; Cortes and Mohri, 2006; Tolstikhin et
al., 2014]. The first general bound studied the binary loss
functions, presented in [Vapnik, 1982], was implicit in the
sense that the value of the bound was specified as an outcome
of a computational procedure. [Blum and Langford, 2003;
Derbeko et al., 2004] developed several fast rates of PAC-
Bayesian bounds which critically depends on the prior distri-
bution over the hypothesis class. [Cortes and Mohri, 2006]
considered a transductive regression with bounded squared
loss and obtain a generalization error bound. [Tolstikhin et
al., 2014] provided the first general fast rates of convergence
in transduction learning based on the traditional local tech-
nique [Bartlett et al., 2005], which required the Bernstein
condition and the surrogate function ψm to be “sub-root”. To
the best of our knowledge, there has not been achieved in
previous literature for general optimal upper bounds relaxing
the Bernstein condition and the “sub-root” surrogate function
assumption. Generalization bounds for algorithms that con-
sider variance information also have not been discussed in
transductive learning.

Besides we have to mention that transductive bounds based
on algorithmic stability have been studied for classification in
[El-Yaniv and Pechyony, 2006], and for regression in [Cortes
et al., 2009]. However, both of them do not yield fast risk
bounds.

3 Preliminaries
3.1 Notations
In standard i.i.d. problem, we assume that a random sample
z follows an unknown distribution P with the data support
Z . For each realization of z, let ℓ(·; z) be a real-valued loss
function, defined over the hypothesis class W . Given n i.i.d
samples {zi}ni=1 drawn from P as training set. Then the pop-
ulation risk and the empirical risk are as follows:

Pℓ(w; z) = Ez[ℓ(w; z)], Pnℓ(w; z) =
1

n

n∑
i=1

ℓ(w; zi).

However, in transductive learning, the learner is provided
with m labeled training points and u unlabeled test points.
The objective of the learner is to obtain accurate predictions
for the test points. Two different settings of transductive
learning were given by [Vapnik, 1998]. One assumes that
both the training and test sets are sampled i.i.d. from a same
unknown distribution and the learner is provided with the la-
beled training and unlabeled test sets. Another assumes that
the set consisting of N arbitrary input points without any
other assumptions regrading its underlying source is given.
In this paper, we study the second setting, as pointed out by
[Vapnik, 1998], any upper generalization bound in the sec-
ond setting can easily yield a bound for the first setting by
just taking expectation.

Let’s consider a finite set ZN = (XN ,YN ) containing
N arbitrary input points. For each data point zi = (xi, yi),
we have xi ∈ XN and its corresponding output yi ∈ YN
serves as the label. From this set, we uniformly sample
m < N elements Xm ⊂ XN without replacement, cre-
ating a dependency among the inputs within Xm. Natu-
rally, we also sample the corresponding outputs Ym for the
input examples in Xm. The resulting training set is de-
noted as Zm = (Xm,Ym) and the test set is denoted as
Zu = (Xu,Yu).

For any w ∈ W and the loss function ℓ : W × Z → R
bounded by [−B,B], the training error and the test error can
be defined as

R̂m(w) =
1

m

∑
z∈Zm

ℓ(w; z), Ru(w) =
1

u

∑
z∈Zu

ℓ(w; z).

For technical reasons that will become clear later, we also
define the overall error with regard to both the union of the
training and test sets as

RN (w) =
1

N

∑
z∈ZN

ℓ(w; z).

Then, the main goal of the learner in transductive setting is to
select proper parameters to minimizing the test error Ru(w),
which we will denote by w∗

u. Since the labels of the test set
examples are unknown, we can’t compute Ru(w) and need
to estimate it based on the training sample Zm. A common
choice is to replace the test error minimization by empirical
risk minimization ŵm ∈ argminw∈W R̂m(w) and to use it
as an approximation of w∗

u. For w ∈ W we define the excess
risk in transductive learning:

Eu(w) = Ru(w)− inf
w′∈W

Ru(w
′) = Ru(w)−Ru(w

∗
u).

From now on it will be convenient to introduce the following
operators, mapping functions f (for example excess loss in
Theorem 1) defined on z to R:

ENf =
1

N

N∑
i=1

f(zi), zi ∈ ZN ,

Êmf =
1

m

m∑
j=1

f(zj), zj ∈ Zm.
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3.2 Empirical Process Theory to Generalization
In this subsection, we introduce classical empirical process
theory to construct surrogate function by upper bounding the
“local Rademacher complexity”. Here we give the definition
of Rademacher complexity for completeness.

Definition 1 (Rademacher complexity [Wainwright, 2019]).
For a function class F that consists of mappings from Z to R
and f ∈ F , define

RF := Ez,v sup
f∈F

1

n

n∑
i=1

vif(zi)

and

RnF := Ev sup
f∈F

1

n

n∑
i=1

vif(zi),

as the Rademacher complexity and the empirical Rademacher
complexity of F , respectively, where {vi}ni=1 are i.i.d.
Rademacher variables and P(vi = 1) = P(vi = −1) = 1

2 .

Furthermore, we can apply Dudley’s integral bound [Srid-
haran, 2010] to gain the upper bound on the local Rademacher
complexity using the covering number of hypothsis class F .
Here we introduce the definition of covering number and
Dudley’s integral bound.

Definition 2 (Covering number [Wainwright, 2019]). As-
sume (M,metr(·, ·)) is a metric space, and F ⊆ M. The
ε-convering number of the set F with respect to a metric
metr(·, ·) is the size of its smallest ε-net cover:

N (ε,F ,metr) = min{m : ∃f1, . . . , fm ∈ F
such that F ⊆ ∪mj=1B(fj , ε)},

where B(f, ε) := {f̃ : metr(f̃ , f) ≤ ε}.

Assume that there is a function w∗
N ∈ W satisfying

RN (w∗
N ) = infw∈W RN (w). Define the excess loss class

F∗ = {f : f(z) = ℓ(w; z)− ℓ(w∗
N ; z),w ∈ W}.

Lemma 1 (Dudley’s integral bound [Sridharan, 2010]).
Given r > 0 and class F that consists of functions defined
on Z ,

Rn{f ∈ F : Pn[f2] ≤ r}

≤ inf
ε0>0

{
4ε0 + 12

∫ √
r

ε0

√
logN (ε,F , L2(Pn))

n
dε

}
.

4 Upper Bounds for Empirical Risk
Minimization

In this section, we start with the novel functional based peel-
ing method. We discussed this method and compare with tra-
ditional localized technique [Bartlett et al., 2005; Tolstikhin
et al., 2014] in detail. Then we derive upper bounds for ERM
in transductive learning and illustrate our fast rates in two
common assumptions: non-parametric classes of polynomial
growth and VC classes.

4.1 Functional based Peeling Method
In uniform localized convergence procedure, we firstly define
a real valued function ψm that upper bounds the uniform error
within a localized region {f ∈ F : T (f) ≤ r}, T : F → R+

is a measurement functional.
Definition 3. Letψm be a function that maps [0,+∞)×(0, 1)
to (0,+∞), which possibly depends on the observed samples
{zi}mi=1. Assume ψm satisfies for arbitrary fixed δ, r, with
probability at least 1− δ,

sup
f∈F :T (f)≤r

(EN − Êm)f ≤ ψm(r; δ).

Traditional localized technique provided by Corollary 5.3
of [Bartlett et al., 2005] peels hypothesis space by a non-
decreasing and nonnegative “sub-root” function such that
r → ψ(r; δ)/

√
r is also nonincreasing for r > 0. We relax

this assumption by a meaningful surrogate function instead,
which removes the “sub-root” condition.
Definition 4 (Meaningful Surrogate Function). If a func-
tion ψ(r; δ) defined over [0,+∞)× (0, 1) is non-decreasing,
non-negative and bounded with respect to r for every fixed
δ ∈ (0, 1). This function is called a meaningful surrogate
function.

Note that the excess loss class in Theorem 3 is itself non-
decreasing and non-negative, and the boundedness require-
ment can always be met by setting ψ(r; δ) = ψ(4B2; δ) for
all r ≥ 4B2. Next, we give the main theorem.
Theorem 1. For the excess loss class F∗ = {f : f(z) =
ℓ(w; z) − ℓ(w∗

N ; z),w ∈ W}, assume there is a meaningful
surrogate function ψm(r; δ) that satisfies for all δ ∈ (0, 1),
λ > 1 and for all r > 0, with probability at least 1− δ

sup
f∈F∗:ENf2≤r

(EN − Êm)f ≤ ψm(r; δ).

Then for any δ ∈ (0, 1) and r0 ∈ (0, 4B2), with probability
at least 1− δ

(EN − Êm)f ≤ ψm

(
max

{
λENf

2, r0
}
;

δ

2 logλ
4B2λ
r0

)
.

Remark 1. The “cost” of this localized uniform conver-
gence mainly from the additional logλ

4B2λ
r0

term, which

only appear in the form log

(
δ

2 logλ
4B2λ
r0

)
in high-probability

bounds, which is of a negiligible O(log log n) order in gen-
eral. The proof technique is motivated by [Xu and Zeevi,
2024], which peels with a variable functional rather than a fix
value r∗.

Then, we compare this theorem with existing result in [Tol-
stikhin et al., 2014] based on traditional local Rademacher
complexities [Bartlett et al., 2005].
Theorem 2 ([Bartlett et al., 2005; Tolstikhin et al., 2014]).
Assume that the loss function ℓ is bounded in the interval
[0, 1] and there is a constant Be > 0 such that for every
f ∈ F∗ we have ENf2 ≤ BeENf . Assume that there is
a sub-root function ψm(r) such that

sup
f∈F∗;ENf2≤r

(EN − Êm)f ≤ ψm(r).
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Let R̂∗
m be a fixed point of ψm(r). Then for any t > 0 with

probability at least 1− δ, we have

(EN − Êm)f ≤ inf
K>1

ENf

K
+ 25

K

Be
λR̂∗

m,

where λ > 1 is a constant to peeling the hypothesis space.
Remark 2. There are three issues we need to point out here.
Firstly, Theorem 2 is a modified version of Theorem 11 in
[Tolstikhin et al., 2014]. which gave a direct result under
the empirical risk minimization algorithm. However, their
proof satisfies uniformly over the hypothesis space F∗. For
a more intuitive comparison between our results and theirs,
here we give the modified results using their techniques uni-
formly over F∗, the differences between [Tolstikhin et al.,
2014] and proof of Theorem 2 are given in Appendix.

Secondly, we want to point out that Theorem 2 assumes
the bounded loss and the Bernstein condition. However, the
bounded loss assumption can derive to the Bernstein condi-
tion. (Although it may be possible to assume the existence
of smaller constants that satisfy the Bernstein condition on
the bounded loss). Thus, in the following comparison, we
will give the version of Theorem 1 that satisfies the Bernstein
condition. Later in the rest of our paper, in order to highlight
our core contribution, we will directly use the loss-bounded
derivation of the constant that remove the Bernstein condition
directly.

Finally, we notice that Theorem 11 in [Tolstikhin et al.,
2014] includes an extra term O

(
Be log

(
1
δ

) (
N
m2

))
, which is

involved from the concentration inequality for sampling with-
out replacement (See Lemma 3). But Theorem 1 in our paper
only focuses on the peeling technique and has not yet brought
in the concentration inequality to highlight our main tech-
nique. When comparing with Theorem 1, we take out the
“peeling technique” in Theorem 2 and focus on the improve-
ment of the peeling technique.
Remark 3. Now we start to compare Theorem 1 with The-
orem 2 given in [Tolstikhin et al., 2014]. Overall, our re-
sults does not require the surrogate function ψm to be “sub-
root”. Despite weaker assumptions, our results are typically
“tighter” than Theorem 2 under the same assumptions. Here
we explain in detail.

On one hand, under the “sub-root” assumption, and taking
the optimal choice of K, Theorem 2 can be rewrite as

(EN − Êm)f ≤ 10

√
λR̂∗

mENf

Be
.

Under the same assumption ENf
2 ≤ BeENf and use

Theorem 1 it is straightforward to have

ψm
(
λENf

2; δ
)
≤ ψm(λBeENf ; δ)

≤
√
λBeENf√
R̂∗
m

ψm(R̂∗
m; δ) ≤

√
λR̂∗

mENf

Be
,

(1)

where the first inequality applies the Bernstein condition. The
second inequality holds because the surrogate function ψm is
sub-root. The last inequality holds because R̂∗

m is the fixed
point of Beψm(r, δ).

Then we can derive the conclusion that when ENf ≤ R̂∗
m

Be
,

(EN − Êm)f is of order λR̂∗
m

Be
both in Theorem 1 and The-

orem 2. When ENf >
R̂∗

m

Be
, (EN − Êm)f is of order√

λR̂∗
mENf
Be

in Theorem 2. However our results in Theorem
1 is of order ψm

(
λENf

2; δ
)
, which is strictly improved be-

cause ψm
(
λENf

2; δ
)
≤
√

λR̂∗
mENf
Be

according to (1).
On the other hand, the removal of the “sub-root” require-

ment on ψm is also important. The “sub-root” inequality (the
first inequality in (1)) becomes an equality when ψm(r; δ) =

O

(√
dr
m

)
in the parametric case, where d is the paramet-

ric dimension. However, when the hypothesis space F is
“rich”, ψm(r;δ)√

r
can be strictly decreasing but “sub-root” as-

sumption only requires nonincreasing so that the “sub-root”
assumption can become loose. For example, when F is a non-

parametric class, we often have ψm(r; δ) = O

(√
r1−ρ

n

)
for

some ρ ∈ (0, 1). Under this condition, the richer F is, the
more loose the “sub-root” inequality is, which further lead to
looser bounds. We will discuss the case in detail in Theorem
4.

4.2 Upper Bounds for Empirical Risk
Minimization

In this subsection, we apply our results to the loss-dependent
rates of empirical risk minimization (ERM) via a surrogate
function ψm and its fixed point R̂∗

m, and further give new re-
sults on two important families of classes: parametric classes
of polynomial growth and VC classes. We denote the ef-
fective loss L∗ = EN [ℓ(w∗

N ; z)− infw∈W ℓ(w; z)] on full
dataset.

Theorem 3. For the excess loss class F∗ = {f : f(z) =
ℓ(w; z) − ℓ(w∗

N ; z),w ∈ W}, assume there is a meaningful
surrogate function ψm(r; δ) that satisfies for all δ ∈ (0, 1)
and for all r > 0, with probability at least 1− δ

sup
f∈F :ENf2≤r

(EN − Êm)f ≤ ψm(r; δ).

Then ŵm ∈ argminW{R̂m(w)} satisfies for any δ ∈ (0, 1)
and r0 ∈ (0, 1), with probability at least 1− δ

RN (ŵm)−RN (w∗
N )

≤max

{
ψm

(
24BL∗;

δ

2 log2
8B2

r0

)
,
R̂∗
m

6B
,
r0
48B

}
,

where R̂∗
m is the fixed point of 6Bψm

(
8r; δ

2 log2
8B2

r0

)
.

Remark 4. Notice that the term r0 can be selected very
small. For example, we can set r0 = B2

m4 , which can
make it much smaller than R̂∗

m. (R̂∗
m can be calculated ac-

cording to classical empirical process theory and Dudley’s
integral bound [Sridharan, 2010] and is at least of order
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O(B2 log 1
δ /m)). Under this situation, logλ

4B2λ
r0

is of or-

der logm, which only appear in the form log

(
2 logλ

4B2λ
r0

δ

)
in the final result, which is of order log logm and can be re-
garded as an absolute constant. Comparing with traditional
localized Rademacher complexities [Bartlett et al., 2005;
Tolstikhin et al., 2014], Theorem 3 can apply to broader set-
tings. Since we bypass the “sub-root” assumption on ψm and
adapt to the better parameter L∗ instead of traditional ENf .

To illustrate the noticeable gaps between our results and
previous works, we compare them on two important families
of classes: non-parametric classes of polynomial growth and
VC classes. To bound meaningful surrogate function in Def-
inition 4, we need to build a connection between the supre-
mum of the empirical process from sampling without replace-
ment and Rademacher complexities using modified concen-
tration inequalities. Here we provide the following lemma
for transductive learning.

Lemma 2. Let F be a class of functions that map Z into
[−2B, 2B]. Assume that there is some r > 0 such that for
every f ∈ F , V ar[f(zi)] ≤ r. Then for any δ ∈ (0, 1), with
probability at least 1− δ

sup
f∈F

(EN − Êm)f ≤ 2RmF + 2

√
2

(
N

m2

)
r log

(
1

δ

)
.

Moreover, the same results hold for the quantity
supf∈F (Êm − EN )f .

Remark 5. Lemma 2 uses classical empirical process theory
to construct surrogate function by upper bounding the “lo-
cal Rademacher complexity”. Traditional concentration in-
equality for empirical process such as [Bartlett et al., 2005]
are derived from standard Talagrand’s concentration inequal-
ity, where we set the random variable to be supf (P − Pn)f
and use symmetrization inequality for Rademacher complex-
ity to build a connection between E supf (P − Pn)f and
RnF . However, we can’t directly apply Talagrand’s concen-
tration inequality for supf (EN − Êm)f because this sam-
ples are independent without replacement. We derive the
concentration inequality for empirical process in transduc-
tive learning, which is motivated by [Bartlett et al., 2005].
But we use the sub-gaussian type concentration for sam-
pling without replacement in [Tolstikhin et al., 2014] instead
of Talagrand’s concentration inequality [Bousquet, 2002a;
Bousquet, 2002b].

Then, we derive the bounds with two families of classes.

Theorem 4 (Non-parametric classes of polynomial growth).
Consider a loss class ℓ ◦W with the metric entropy condition

logN (ε, ℓ ◦W , dℓ◦W) ≤ O(ε−2ρ),

under the conditions of Theorem 3, then for any δ ∈ (0, 12 ),
with probability at least 1− δ, we have

RN (ŵm)−RN (w∗
N ) ≤ O

(
max

{√
(BL∗)1−ρ

m
,
B

1−ρ
1+ρ

m
1

1+ρ

})
.

Furthermore, for any δ ∈ (0, 12 ), with probability at least
1− δ, we have

E(ŵm) ≤ O

(
N

u

(
max

{√
(BL∗)1−ρ

m
,
B

1−ρ
1+ρ

m
1

1+ρ

})

+
N

m

(
max

{√
(BL∗)1−ρ

u
,
B

1−ρ
1+ρ

u
1

1+ρ

}))
.

Theorem 5 (VC classes). Consider a loss class ℓ ◦ W with
the metric entropy condition

logN (ε, ℓ ◦W , dℓ◦W) ≤ O

(
d log

1

ε

)
,

under the conditions of Theorem 3, then for any δ ∈ (0, 12 ),
with probability at least 1− δ, we have

RN (ŵm)−RN (w∗
N )

≤O

(
max

{√
dBL∗

m
log

B

3L∗ ,
Bd

m
log

B

3L∗ ,
Bd logm

m

})
.

Furthermore, for any δ ∈ (0, 12 ), with probability at least
1− δ, we have

E(ŵm)

≤O

(
N

u

(
max

{√
dBL∗

m
log

B

3L∗ ,
Bd

m
log

B

3L∗ ,
Bd logm

m

})

+
N

m

(
max

{√
dBL∗

u
log

B

3L∗ ,
Bd

u
log

B

3L∗ ,
Bd log u

u

}))
.

Remark 6. Firstly, we compare Theorem 4, Theorem 5 with
existing work [Tolstikhin et al., 2014]. It is worth noting
that we don’t assume the Bernstein condition comparing with
[Tolstikhin et al., 2014]. In fact, we have already discussed in
Remark 3 that under the assumption of the Bernstein condi-
tion, the order of our results is the same as [Tolstikhin et al.,
2014].

In fact, the technique of splitting the hypothesis space used
in the proof of [Tolstikhin et al., 2014] comes from the clas-
sical method [Bartlett et al., 2005]. Using the same technique
and removing the Bernstein condition, we can easily obtain
the result 1

E(ŵm,previous) ≤ O

(
N

u

max


√

L∗R̂∗
m

B
,
R̂∗
m

B




+
N

m

(
max

{√
L∗r∗u
B

,
r∗u
B

}))
.

Similarly, using Dudley’s integral bound [Sridharan, 2010]
and Lemma 2 and solving r ≤ O (Bψm(r; δ)), we can derive
the following two results.

For non-parametric classes of polynomial growth:

1This classical result is different from [Tolstikhin et al., 2014]
because we don’t use the Bernstein condition.
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E(ŵm,previous)

≤O

(
N

u

max


√

L∗B
1−ρ
1+ρ

m
1

1+ρ

,
B

1−ρ
1+ρ

m
1

1+ρ




+
N

m

max


√

L∗B
1−ρ
1+ρ

u
1

1+ρ

,
B

1−ρ
1+ρ

u
1

1+ρ


).

For VC classes:
E(ŵm,previous)

≤O

(
N

u

(
max

{√
dBL∗ logm

m
,
Bd logm

m

})

+
N

m

(
max

{√
dBL∗ log u

u
,
Bd log u

u

}))
.

Here, A ≍ B means there exist two positive constants
c1, c2 such that c1A ≤ B ≤ c2A. Then we will start the
discussions.

For non-parametric classes of polynomial growth, we con-
sider the following two cases:

When B ≍ 1 and L∗ ≍ m−a + u−a, where a is a positive
constant. This case depicts a bounded loss with a small order
for L∗ to obtain a tight bound. In this case, we can easily de-
rive that when 0 ≤ a ≤ 1

1+ρ performs better than traditional

result since our result is of order (L∗)
1−ρ
2 and traditional re-

sult is of order (L∗)
1
2 w.r.t. L∗.

When B ≍ mb + ub and L∗ ≪ B2 where b is a posi-
tive constant. This case depicts that the worst-case bound-
edness parameter is considered to scale with m so that we
want to reduce the dependence on B. In this case, when
B

2
1+ρ ≤ L∗ ≪ B2, our result also gains an improvement

relative to the previous result. And the larger ρ is, the more
improvement our results are. For example, when ρ is almost
1, and m ≍ u, our improvement can be as large as O(m

1
4 ).

For VC classes, we discuss the case that when L∗ ≥(
B

(logm+log u)a

)
, where a is a positive constant. We find that

our results is log logm (or log log u) term instead of logm
(or log u), which is strictly tighter than previous results.

Next, we notice that we don’t know the population “effec-
tive loss” L∗ in practice. We denote the empirical “effective
loss” L̂∗ = Êm [ℓ(w∗

m; z)− infw∈W ℓ(w; z)] in this part and
build a connection between the optimal upper bounds without
the knowledge of L∗.
Theorem 6 (Estimating loss-dependent rate from data). Note
that term L∗ is defined as EN [ℓ(w∗

N ; z)− infw∈W ℓ(w; z)]

and denote L̂∗ = Êm [ℓ(w∗
m; z)− infw∈W ℓ(w; z)]. Under

the conditions of Theorem 3, then for any fixed δ ∈ (0, 12 ),
with probability at least 1− δ, we have

RN (ŵm)−RN (w∗
N )

≤max

{
ψm

(
cBL̂∗;

δ

2 log2m+ 6

)
,
cR̂∗

m

m
,
cB log 2

δ

m

}
,

where c is an absolute constant.

Remark 7. The term B log 2
δ

m in Theorem 6 is negligi-

ble, because R̂∗
m is at least of order B2 log 1

δ

m for most
practical applications. This order is unavoidable in tra-
ditional “local Rademacher complexity” analysis and two-
sided concentration inequalities. This generalization error
bound shows that without knowledge of L∗, one can esti-
mate the order of our loss-dependent rate by using L̂∗ =

Êm [ℓ(w∗
m; z)− infw∈W ℓ(w; z)] as a proxy. Despite replac-

ing L∗ by L̂∗, other quantities in the bound remain unchanged
in order.

5 Upper Bounds for Moment Penalization
The risk bounds provided in Section 4.2 consider the param-
eter L∗ within their ψm function (or ENf using traditional
localized peeling techniques), which may still be much larger
than the optimal variance V∗ := Var[ℓ(w∗

N ; z)]. An example
is given in [Namkoong and Duchi, 2017] in i.i.d. problems
where V∗ = 0 and the optimal rate is at most O

(
logm
m

)
,

while the excess risk bound of ERM is proved to be slower
than O

(
1√
m

)
.

We follow the path of penalizing empirical second moment
in standard minimization settings [Namkoong and Duchi,
2017; Xu and Zeevi, 2024; Foster and Syrgkanis, 2023] to
design an estimator that achieves the bias-variance trade-off
for transductive learning. In order to adapt to V∗, we use a
sample-splitting two-stage estimation procedure which is in-
spired by the prior work in standard i.i.d minimization set-
tings [Xu and Zeevi, 2024; Foster and Syrgkanis, 2023].
Without loss of generality, we assume the size of the whole
dataset is 2N and the training dataset is 2m and split the train-
ing dataset into the primary dataset S and the auxiliary dataset
S′, both of which are of size m for training dataset and u for
test dataset. We denote Em the empirical distribution of the
primary dataset andES′ the empirical distribution of the aux-
iliary dataset. Then we define the two-stage sample-splitting
moment-penalized estimator.
Definition 5 (Two-stage Sample-splitting Moment-penalized
Estimator). We use a sample-splitting two-stage estimation
procedure.
• At the first stage, we derive a preliminary estimate of L∗

0 :=
Eℓ(w∗

N ; z) via the “auxiliary” data set S′, which we refer
to as L̂∗

0.
• At the second stage, we perform regularized empirical risk

minimization on the “primal” data set S, which consider-
ing the moment penalization. Consider the excess loss class
F∗ = {f : f(z) = ℓ(w; z) − ℓ(w∗

N ; z),w ∈ W}. Let
ψm(r; δ) be a meaningful surrogate function that satisfies
∀δ ∈ (0, 1) and ∀r > 0, with probability at least 1− δ,

2Rm{f ∈ F : Êmf
2 ≤ 2r}+

√
2r log

(
8
δ

)
m

+
9 log

(
8
δ

)
m

≤ ψm(r; δ).
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Then give a fixed δ ∈ (0, 1), let the moment-penalized esti-
mator ŵMP be

ŵMP ∈ argmin
w∈W

{
Êmℓ(w; z)

+ ψm

(
16Êm[(ℓ(w; z)− L̂∗

0)
2];

δ

2 log2m+ 5

)}
.

Using the estimator provided in Definition 5, we can derive
the following variance-dependent rate.

Theorem 7. Given arbitrary preliminary estimate L̂∗
0 ∈

[−B,B], the generalization error of the moment-penalized
estimator ŵMP in Definition 5 is bounded by

RN (ŵMP)−RN (w∗
N )

≤2ψm

(
c0

[
max

{
V∗, R̂∗

m, (L̂∗
0 − L∗

0)
2
}]

;
δ

2 log2m+ 5

)
,

with probability at least 1 − δ, where c0 is an ab-
solute constant and the term R̂∗

m is the fixed point of

16Bψm

(
r; δ

2 log2m+5

)
.

Remark 8. Notice that we don’t need the assumption that
ψm is “sub-root” function in Theorem 7 and we can easily
find that the first stage estimation error (L̂∗

0 − L∗
0)

2 can be
omitted if (L̂∗

0 − L∗
0)

2 ≤ O(R̂∗
m).

Further more, to bound the first stage estimation error
(L̂∗

0−L∗
0)

2, we add the “sub-root” assumption in Theorem 8.

Theorem 8. Given arbitrary preliminary estimate L̂∗
0 ∈

[−B,B], the generalization error of the moment-penalized
estimator ŵMP in Definition 5 is bounded by

RN (ŵMP)−RN (w∗
N )

≤max

{
2ψm

(
c1V∗;

δ

2 log2m+ 5

)
,
c1R̂

∗
m

8B

}
,

with probability at least 1 − δ, where c0 is an ab-
solute constant and the term R̂∗

m is the fixed point of
16Bψm(r; δ

2 log2m+5 ).

Remark 9. Similarly, δ
2 log2m+5 only appear in the form

log log
(

2 log2m+5
δ

)
in the final result, which is of order

log logm and can be regarded as an absolute constant for all
practical purposes. We have to emphasize that the “sub-root”
assumption is only used to bound the first-stage estimation
error (L̂∗

0 − L∗
0)

2 defined in Definition 5. We can also apply
the Dudley’s integral bound and derive the results for non-
parametric classes of polynomial growth and VC classes.

Theorem 9 (Non-parametric classes of polynomial growth).
Consider a loss class ℓ ◦W with the metric entropy condition

logN (ε, ℓ ◦W , dℓ◦W) ≤ O(ε−2ρ),

under the conditions of Theorem 8, then for any fixed δ ∈
(0, 12 ), with probability at least 1− δ, we have

RN (ŵMP)−RN (w∗
u)

≤O

(
N

u

(
max

{√
(V∗)1−ρ

m
,
B

1−ρ
1+ρ

m
1

1+ρ

})

+
N

m

(
max

{√
(V∗)1−ρ

u
,
B

1−ρ
1+ρ

u
1

1+ρ

}))
.

Theorem 10 (VC classes). Consider a loss class ℓ ◦ W with
the metric entropy condition

logN (ε, ℓ ◦W , dℓ◦W) ≤
(
d log

1

ε

)
,

under the conditions of Theorem 8, then for any fixed δ ∈
(0, 12 ), with probability at least 1− δ, we have
RN (ŵMP)−RN (w∗

u)

≤O

(
N

u

(
max

{√
dB2V∗

m
log

B2

3V∗ ,
Bd

m
log

B2

3V∗ ,
Bd logm

m

})

+
N

m

(
max

{√
dB2V∗

u
log

B2

3V∗ ,
Bd

u
log

B2

3V∗ ,
Bd log u

u

}))
.

Remark 10. The results for moment penalized estimator is
similar to the ERM algorithm. And to the best of our knowl-
edge, our results are the only generalization result in trans-
ductive learning that consider variance information. Simi-
larly, we can derive the bound with the variance-dependent
rate from data.
Theorem 11 (Estimating Variance-dependent Bounds from
Data). Consider the empirical centered second moment

V̂∗ := Êm

[
ℓ(ŵNMP; z)− L̂∗

0)
2
]
,

where L̂∗
0 ∈ [−B,B] is the preliminary estimate of L∗ ob-

tained in the first-stage, ψm is defined in Definition 5, For
any fixed δ ∈ (0, 1), by performing the moment-penalized es-
timator in Definition 5, with probability at least 1− δ

2 ,

E(ŵMP) ≤ max

{
4ψm

(
16V̂∗;

δ

2 log2m+ 5

)
,
R̂∗
m

8B

}
,

where R̂∗
m is the fixed point of 8ψm

(
r; δ

2 log2m+5

)
.

Remark 11. One should view Theorem 11 as a relaxation of
the original variance-dependent rate in Theorem 8. We also
notice that the “sub-root” assumption in Theorem 11 is not
needed here as we do not discuss the precision of L̂∗

0.

6 Conclusion
In this paper, we develop a novel functional based peeling
technique to derive better uniform localized convergence up-
per bounds in transductive learning without “sub-root” as-
sumption for functions that upper bound the uniform error
within a localized region. Our method can obtain tighter risk
bounds comparing with existing work [Tolstikhin et al., 2014]
for ERM. Furthermore, we design a novel estimator based on
the second moment penalization and derive its generalization
bounds, which are the first results in transductive learning.
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