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Abstract

Multi-view multi-label data often suffers from in-
complete feature views and label noise. This pa-
per is the first to address both challenges simul-
taneously, rectifying critical deficiencies in exist-
ing methodologies that inadequately extract and
fuse high-order structural correlations across views
while lacking robust solutions to mitigate label
noise. We introduce a dynamic multiple high-order
correlations fusion with noise filtering, specifi-
cally designed for incomplete multi-view noisy-
label learning. By capitalizing on a dynamic multi-
hypergraph neural network, inspired by the prin-
ciples of ensemble learning, we adeptly capture
and integrate high-order correlations among sam-
ples from different views. The model’s capability
is further augmented through an innovative hyper-
graph fusion technique based on random walk the-
ory, which empowers it to seamlessly amalgamate
both structural and feature information. Moreover,
we propose sophisticated noise-filtering matrices
that are tightly embedded within the hypergraph
neural network, devised to counteract the detrimen-
tal impact of label noise. Recognizing that la-
bel noise perturbs the data distribution in the label
space, these filtering matrices exploit the distribu-
tional disparities between feature and label spaces.
The high-order structural information derived from
both domains underpins the learning and efficacy of
the noise-filtering matrices. Empirical evaluations
on benchmark datasets unequivocally demonstrate
that our method significantly outperforms contem-
porary state-of-the-art techniques.

1 Introduction

The prevalence of multi-view and multi-label challenges has
become increasingly prominent with the rise of diverse data
modalities. For instance, users on social networking plat-
forms can be characterized through modalities such as im-
ages, text, and audio, and may be associated with multiple
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labels, such as ’Symphony’, *Beethoven’, ’Piano’, and ’Clas-
sical school’. Accurately classifying such multi-view, multi-
label data is crucial for comprehensive data analysis [Qian ef
al.,2014; Zhu et al., 2015].

The investigation of multi-view multi-label learning is
more complex than addressing either multi-view [Wang et al.,
2022] or multi-label [Liu et al., 2021] data independently, as
it requires the simultaneous consideration of both the corre-
lations among different data views and the intricate depen-
dencies across multiple labels. In light of this complexity, re-
searchers have increasingly shifted their attention to incom-
plete multi-view multi-label learning, recognizing that real-
world applications frequently encounter incomplete data in
both its feature representations and label annotations [Tan er
al., 2018; Li and Chen, 2021; Li et al., 2024; Ou et al., 2024;
Liu et al., 2023; Liu et al., 2024]. Consequently, this learn-
ing framework has emerged as particularly well-suited for ad-
dressing practical, real-world challenges.
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Figure 1. Multi-view multi-label datasets with missing and noisy
labels: (a) Blurred objects are randomly mislabelled; (b) Similar
objects are mislabelled with each other.

Despite significant progress in multi-view multi-label
learning, a crucial issue is often overlooked: label noise. In
today’s data-driven world, errors in data collection, storage,
and annotation are common, particularly with crowdsourced
multi-view data, where human mistakes introduce incorrect
labels, creating label noise. As datasets expand, the impact
of label noise becomes more severe (Figure 1). This typically
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arises from two sources: (1) ambiguous objects leading to
random mislabeling (e.g., missing ’cloud’ while incorrectly
labeling "harbor’) and (2) confusion between similar objects
(e.g., mistaking a column’ for a ’fence’). The co-existence
of label noise and missing labels presents a greater challenge.

In response to these challenges, incomplete multi-view
noisy-label learning has emerged as a novel learning
paradigm designed to address the complexities of real-world,
large-scale multi-view and multi-label data with prevalent in-
complete views and erroneous annotations. To tackle these
issues, this paper introduces a novel approach: Dynamic Mul-
tiple High-Order Correlations Fusion with Noise Filtering
for Incomplete Multi-View Noisy-Label Learning (DMHNF).
The proposed model addresses two pivotal challenges: (1) the
structural differences and correlations across multiple views,
and (2) the detection and mitigation of label noise, which sig-
nificantly hampers learning performance.

On one hand, in addressing the structural correlation dif-
ferences across views, most existing studies emphasize in-
tegrating features and second-order correlations (e.g., graph
structures [Hamilton et al., 2017; Veli¢kovié et al., 2017;
Defferrard et al., 2016]) between samples from different
views. However, limited attention has been given to the ex-
ploration and integration of high-order correlations between
samples across views. High-order correlations [Gao er al.,
2020] encapsulate the distinct distributional characteristics of
each view, which become particularly critical when certain
views are incomplete. In such cases, the high-order correla-
tions present in the remaining views can provide crucial in-
formation to compensate for the missing data. On the other
hand, regarding the challenge of detecting and mitigating la-
bel noise, most current multi-label learning approaches fo-
cus on leveraging label correlations to impute missing labels.
However, these methods often fail to utilize high-order cor-
relations between samples to assist in correcting label noise.
Our approach addresses this gap by incorporating noise cor-
rection matrices within the hypergraph network, enabling the
dynamic adjustment and correction of noisy labels. By lever-
aging high-order correlations in the feature space, we can also
refine the label space, allowing for label noise correction from
a distributional perspective. These integrated strategies en-
able the proposed method to attain both high accuracy and
robustness. The key contributions of this study are as follows:

(1) We introduce the incomplete multi-view noisy-label
learning paradigm, which concurrently addresses view in-
completeness and label noise. This paradigm is well-suited
for large-scale data, where multi-view descriptions are often
incomplete and annotations frequently contain errors.

(2) We propose a novel dynamic multi-hypergraph fusion
network that enhances multi-view data integration by concur-
rently fusing high-order structural and feature information.
These two types of information are exploited in parallel, mu-
tually reinforcing one another.

(3) Our method facilitates communication between the fea-
ture and label spaces via the dynamic hypergraph, leveraging
high-order correlations in the feature space to correct label
noise. By integrating noise filtering matrices with the hyper-
graph neural network, we reduce the detrimental effects of
label noise from a distributional standpoint.

2 Related Work

Multi-view multi-label data is increasingly common in mod-
ern datasets, but as data volume grows, ensuring complete-
ness and label accuracy remains a challenge. This has el-
evated incomplete multi-view weak-label learning as a key
focus area in machine learning research. Tan et al. pio-
neered the field with their model iMVWL [Tan et al., 2018],
which jointly optimizes a shared subspace for incomplete
views and a weak label classifier while learning local label
correlations. This approach tackles the dual challenges of
missing views and incomplete labels, laying the groundwork
for subsequent research. Building upon these insights, Li
et al. developed NAIM3L [Li and Chen, 20211, a concise
yet powerful model that addresses non-aligned incomplete
multi-view and multi-label learning. It leverages multi-view
consensus and uncovers both global and local label struc-
tures, aligning individual labels across diverse views to man-
age non-aligned data more effectively. Given the impact of
deep learning in this domain, Liu et al. introduced DICNet
[Liu et al., 2023], a deep instance-level contrastive network
designed for doubly incomplete multi-view multi-label clas-
sification. This model employs autoencoders for end-to-end
feature extraction and implements a contrastive learning strat-
egy, combined with a multi-view weighted fusion module to
boost classification accuracy. Lastly, Liu et al. developed a
method SIP [Liu et al., 2024] based on semantic invariance
and prototype modeling. By applying the Information Bot-
tleneck Theory, it compresses cross-view representations to
maximize shared information, enhancing the accuracy of la-
bel prediction while modeling multi-label prototypes in latent
space. Despite these advances, significant complexities re-
main when dealing with label noise in incomplete multi-view
multi-label data, highlighting the need for further innovation
in this rapidly evolving area of research.

Various methodologies [Cui et al., 2020; Zhang et al.,
2019; Xie and Huang, 2022] have emerged to address the
intricate scenarios characterized by the coexistence of label
noise and missing labels. Chen et al. introduced a gener-
alized noisy multi-label classification method [Chen et al.,
2024] utilizing a label embedding network that captures the
intricate correlations between the feature and label spaces.
This innovative method employs regularization on noisy pre-
dictions based on label correlations, yielding promising out-
comes in scenarios marked by the presence of both label noise
and missing labels. From this analysis, it is evident that the
complexities associated with multi-view multi-label learning
escalate significantly when both label noise and missing la-
bels are present. Consequently, models must be adept at inte-
grating incomplete representations across diverse views while
concurrently managing label noise and missing labels with ef-
ficacy. The dynamic hypergraph network [Jiang er al., 2019;
Fu et al., 2022; Zhou et al., 2023] is suitable for discover-
ing and utilizing the complex high-order correlations in the
problem proposed in this paper. In this paper, we tackle
this multifaceted challenge by designing a dynamic multi-
hypergraph neural network supplemented by label filtering
matrices, leveraging high-order correlations among samples
to address these critical issues effectively.
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Figure 2. Framework of the proposed Dynamic Multiple High-order Correlations Fusion with Noise Filtering for Incomplete Multi-view
Noisy-label Learning, consisting of two main modules: Dynamic Multi-hypergraph Neural Network and Hybrid Noise Filtering.

3 Proposed Approach

The dataset is denoted as D = {{X (9 ¢ RdeQ}q LY}

where X (@9 € R™*da is the g-th view (with feature dimen-
siond,), Y € {0,1}*"™ is the label matrix, W € {0,1}™**
indicates missing views, and m and n denote the numbers
of samples and label classes, respectively. The objective is
to learn a mapping function f : X — Y through which the
label ¢ of a test instance & can be accurately inferred. Our
method addresses both incomplete data and label noise with
two key contributions (Figure 2). First, we model high-order
correlations across views, treating the label space as a spe-
cial view, using a dynamic multi-hypergraph neural network.
This network effectively integrates these correlations to en-
hance learning. Second, we design two label-filtering matri-
ces that refine noisy labels and address missing information.
These matrices, tightly integrated within the hypergraph neu-
ral network, mitigate the adverse effects of label noise while
leveraging high-order structural information.

3.1 Dynamic Multi-hypergraph Neural Network

Building the multi-hypergraph neural network first requires
constructing the corresponding hypergraphs in both the fea-
ture space and the label space. For the feature space hyper-
graph, we adopt a clustering-based approach to construct hy-
peredges, which in turn forms the hypergraph. Specifically,
for each view, an independent hypergraph is built based on the
data from that view. In this setup, each sample is treated as

a vertex, with corresponding hyperedges generated for each
vertex [Zhou et al., 2006]. A hypergraph G = (V, E,w) con-
sists of vertices V, hyperedges E, and weights w(e). It is
represented by an incidence matrix H, where h(v,e) = 1 if
and only if v € e. Vertex and hyperedge degrees, d(v) and
d(e), are computed based on H, enabling random walks on
G to model relationships as a finite Markov chain. Following
the method outlined in [Zhu et al., 2017al, hyperedges in the
feature space H(?) are constructed using the formula:

@D — ()| 0z, 25) > 010}, ij=1,...,m (1)
where 6(x;, ;) represents the similarity between samples x;

and z;, and O'(q) is the average similarity between x; and all
other samples For the label space hypergraph, we construct
two hypergraphs. In the first hypergraph, labels are treated
as hyperedges, allowing the label matrix to be directly rep-
resented as a hypergraph incidence matrix H! = Y. In the
second hypergraph, H¢ is constructed to contains semantic
information of labels, hyperedges in which are constructed
using the formula:

e ={vj |w(yi,y;) > 0105}, 4,5=1,....m (2
where w(y;,y;) denotes sum of the pairwise distances be-
tween the word-to-vector representations of corresponding
relevant labels in the two label sets, and oy is the average
similarity between y; and all other samples.

This neural network is primarily used to fuse information
from multiple views of the data, including both the structural
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correlations information among the data and the feature in-
formation of the data. So the fusion occurs on two levels: the
fusion of high-order structural information and the fusion of
feature information from different views. In this study, we in-
troduce a dynamic multi-hypergraph updating mechanism for
the fusion of high-order structural information. This method
aims to generate a new hypergraph by fusing hypergraph se-
quences from prior network iterations. Notably, here we do
not directly construct a new hypergraph based on the preced-
ing hypergraph sequence. Instead, we formulate the Lapla-
cian matrix of the new hypergraph, and subsequently, build
a hypergraph neural network based on this Laplacian matrix
[Feng er al., 2019]. The specific fusion process is delineated
as follows.

We associate each hypergraph (H(), ... | H(®)) [Zhou et
al., 2006] with a natural random walk [Chitra and Raphael,
2019; Carletti et al., 2020]. This association allows us to
fuse the transition probabilities and stationary distributions of
these hypergraphs to obtain the Laplacian matrix of the fused
hypergraph. Let hypergraphs (1) and H(% representing the
initial hypergraph structure and the hypergraph generated at
the g-th layer, respectively.

Let T and II represent the transition probability and sta-
tionary distribution matrix of the hypergraph random walk,
respectively. The entries of 7" and II are defined as follows:

t(u,v) =

h(u,e) h(v,e) d(v)
w(e) , m(v) = 3)
eEZE' d(u) d(e) vol (V)
The corresponding matrices for H(1) and H(?) are denoted as
T1,11; and Ty, I1,. To elaborate on the fusion, the multiple
hypergraph cut is explained through as follows:

Zal =1 )

a;m;(w)

=S e

_Lsmm) ooy ()
> i cos(my, mi)

The parameter «; is used to determine the relative impor-
tance of each hypergraph during fusion. The cosine similarity
(cos(m;,m;)) between the stationary distributions 7; and 7
measures the degree of similarity between two hypergraphs.
Notably, greater weight is assigned to the hypergraph more
similar to the original, enhancing the overall convergence of
the model.

The fused transition probabilities and stationary distribu-
tion are defined as:

= Z@(@t (u,v) = Z%‘M(’U) (6)

Notably, the formulation of transition probability and sta-
tionary distribution does not follow a simple linear combina-
tion on each hypergraph. The hypergraph Laplacian corre-
spond to hypergraph H(? is denoted as L(?). The Laplacian
matrix of the fused hypergraph is obtained using the equation:

o = (1—0[1)

L@ — 171 —

O7r + 7T &
e Z ™)

Subsequently, following the approach in [Feng et al,
2019], a hyperedge convolutional layer f(X, W, ©) is built
as:

y@ — o ((L<q> _ I)X@@q) (8)
Here, X (9 represents the hypergraph signal at the ¢-th layer,
and o denoting the nonlinear activation function. The ob-
tained Y (9 is instrumental for subsequent learning endeav-
ors.

In the aforementioned steps, we have completed the fusion
of high-order structural correlations information across dif-
ferent views based on hypergraphs. The fusion of multi-view
information based on the aforementioned hypergraph requires
consideration of two key aspects. First, the dynamic integra-
tion of data, where information from different views is con-
tinuously incorporated into the model, much like the previous
hypergraph fusion process. Second, the challenge of missing
views, which is addressed by utilizing missing-view indica-
tor matrix to facilitate data fusion. By leveraging the hyper-
graph correlations and multi-view information, the model ef-
fectively mitigates the adverse effects of missing views on its
performance.

Here, X (@) represents the deep features extracted through
a convolutional neural network. The hypergraph convolution
based on feature space information can be expressed as:

X = o (L9 = W]y XTHD)O) 0, X" (9)
where L(9) is laplacian matrix of the dynamic fused hyper-
graph of (H( ... H(a=1), @’;H are the learnable param-
eters during network training, and o(-) is the nonlinear acti-
vation function. After the convolution operation, we obtain
the image features fused by multi-view data, which capture
the high-order structural information of the samples in the
feature space.

3.2 Hybrid Noise Filtering

It is important to highlight that our method differs signifi-
cantly from traditional incomplete multi-view multi-label ap-
proaches at both the data and model levels, with the key dif-
ference lying in the complexity of the label space. While con-
ventional incomplete multi-view multi-label problems con-
sider only missing labels in the label space, real-world ap-
plications commonly involve the coexistence of both missing
and noisy labels (Figure 3).
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Figure 3. Label space of multi-view noisy-label learning.
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Here, it is assumed that the noise in the label space is multi-
label noise, meaning there exists a certain transition correla-
tions between two labels, and this transition is independent of
the sample features. However, the label space in multi-label
settings is quite complex, so we aim to perform this trans-
formation from the perspective of data distribution. These
two noise correction matrices function alongside their corre-
sponding hypergraph matrices in different label spaces, pri-
marily to counteract the changes in distribution caused by la-
bel noise, ensuring accurate training of the classifier.

To address this, we construct two noise filtering matrices
T and T°¢. The purpose of these matrices is to transform
feature representations to align with the label space, thereby
achieving distribution alignment between the two.

)A/k:-‘rl — O'(Tle_l/2HlWDe_1 (Hl)TD,U_l/2(Yk)@?:
+ uTeD; 2 HOW D ()T DA (e

Next, we will explore how the label transformation ma-
trix 1" (the probability of transitioning from y to y can be ex-
pressed as p(¢ | y)) can enhance the robustness of the learned
multi-label classification model against label noise, and the
method for constructing this matrix.

Assume y** = 1 indicates that sample 2 truly possesses the
i-th label, and 4/ = 1 indicates that sample z has been labeled
with the j-th label under noise interference. The transition
between the two can be achieved through the label transfor-
mation matrix T; = p(37 = 1 | y** = 1), where the label
transformation matrix 77 € R™*"™ is an asymmetric matrix.
Assume the classifier trained by the model predicts the true
label probabilities as p(y™* = 1 | x,6). By utilizing the label
transformation matrix 7', the model is adjusted to align the
predicted distribution with the label distribution of the noisy
data.

P =11%,0,T)=> t;py™ =1|x,0) (1)

(10)

The training objective of the multi-label classification model
is to predict the true and accurate label set y*, rather than
the noisy label set §. After adding 7" to the model, another
confusion matrix U will be obtained:

1 .
Gij = & > G =1]%n,0,T) (12)
I nes;
where S; is the set of training samples with label y/* = 1.
The meaning of the confusion matrix is the probability that a
sample belonging to label j is misclassified as label ¢. There-
fore, if U can be made to become the identity matrix, it im-
plies that the base model can predict the true labels in the
training data.

According to Equation (11), we can obtain U=TU. It
should be noted that in multi-view multi-label learning, each
sample carries multiple labels, and the likelihood of the true
U becoming an identity matrix is very low. Thus, we only use
this idea to correct noisy labels. The model with the trans-
formation matrix 7" constrains the confusion matrix U to be
consistent with the true distribution of noisy labels.

~ 1 N~ * * 7 *
uik:@Zp(y | T, ) =t = U = T* (13)
neSy

By constraining 7' = T, this will force U to converge
to the identity matrix. Therefore, using the model with the
added transformation matrix 7" for training will reduce the
probability of label misclassification and enhance the model’s
robustness against noise. From the above analysis, it is evi-
dent that the noise transformation matrix 7" is the core of the
noise correction module. 7' can be approximately computed
through the following two steps:

7' =argmaxp(y' =11]z), Ty =p@F =113") (14)
e

3.3 Overall Loss Function

To train the entire network, we employ the cross-entropy loss
function, defined as follows:

Leo = ZZyU log (9:5) + (1 — wiz) log (1 — 9i5) (15)

i=1 j=1

To ensure consistency between the feature space and the
label space after multi-view information fusion, we propose
the following high-order structure discrepancy loss:

Ly(XF V%) = | XF ~¥|3 (16)

Additionally, we leverage the canonical Kullback-Leibler
(KL) divergence to measure the alignment between the rep-
resentations processed by the two noise-correcting matrices.
These matrices derived from hypergraphs constructed based
on the label space, focus on different aspects of the data.

m
L=>Y KL(1<j<nggl<j<n) (17
=1

In summary, the overall loss function for the proposed
model is composed of three key components:

L=Lc+ L+ vLi (18)

These loss terms guide training by aligning the feature and
label spaces, improving classification accuracy and robust-
ness in noisy and incomplete multi-view data.

4 Experiments

4.1 Data sets and Experimental settings

We evaluated the proposed DMHNF on five benchmark
datasets: Corel5k [Duygulu et al., 2002], Pascal07 [Evering-
ham et al., 20101, ESPGame [Von Ahn and Dabbish, 20041,
IAPRTC12 [Guillaumin et al., 2009], and Mirflickr [Huiskes
and Lew, 2008], using six feature sets: GIST, HSV, Dense-
Hue, DenseSift, RGB, and LAB. Evaluation used six met-
rics: ranking loss (RL), average precision (AP), Hamming
loss (HL), area under the curve (AUC), OneError (OE), and
Coverage (Cov). For clearer comparison, we adopted 1-RL,
1-HL, 1-OE, and 1-Cov, where higher values indicate bet-
ter performance. Our approach was compared with state-
of-the-art methods in multi-label learning (GLOCAL [Zhu et
al., 2017b], DM2L [Ma and Chen, 2021], CDMM [Xie and
Huang, 2022]) and multi-view multi-label learning (LVSL
[Zhao et al., 2023], iIMVWL [Tan et al., 2018], NAIM3L
[Li and Chen, 2021], DICNet [Liu et al., 2023], SIP [Liu
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Data Metric GLOCAL CDMM  DM2L

LVSL

iMVWL NAIM3L DICNet SIP DMHNF

AP 0.2850.004 0.3540.004 0.2629005 0.342¢ 004 0.283¢.008 0.309¢9.004 0.381g.004 0.418q.009 0.426¢. 004
I-HL 0.9879.000 0.9870.000 0.9870.000 0.9870.000 0.9780.000 0.9870.000 0-9880.000 0.9880.000 0-991¢.000
1-RL  0.840¢.003 0.884¢.003 0.8430.002 0.881p.003 0.8650.005 0.8780.002 0.882¢.004 0.911¢. 003 0.923¢.004

Corel5k  AUC

0.8430.003 0.8880.003 0.845¢.002 0.8840.003 0.8680.005 0.8810.002 0.884¢.004 0.9130.003 0.927¢.005

1-OE 0.327¢.010 0.4100.007 0.2959.014 0.3910.000 0.311¢.015 0.3500.000 0.468¢.007 0.4890.016 0.497¢.007
1-Cov 0.6480.006 0.7230.007 0.6479.005 0.7189.006 0.702¢.00s 0.725¢0.005 0.727¢.011 0.787¢.000 0.791¢.011

AP 0.4960.004 0.508¢.005 0.4710.008 0.504¢.005 0.4370.018 0.488¢.003 0.5050.012 0.555¢.010 0.5670.008
1-HL 0.9270.000 0.9310.001 0.9289.001 0.9300.000 0.8820.004 0.928p.001 0.9299.001 0.9310.001 0.943¢.001
1-RL 0.7679.004 0.812g.904 0.761g.005 0.8060.003 0.7360.015 0.7830.001 0.7830.008 0.8300.004 0.833¢.008

Pascal07 AUC

0.7860.003 0.8380.003 0.7790.004 0.8320.002 0.7670.015 0.8119.001 0.809¢.006 0.8500.005 0.8690.006

1-OE 0.4430_005 0-4190.008 0.4200_011 0-4190.008 0.3620_023 0~42104006 0.42704015 0.4640.018 0.4870_006
1-Cov 0.703¢.004 0.7590.003 0.6920.004 0.7510.003 0.6770.015 0.727¢9.002 0.7310.006 0.7830.006 0.7910.003

AP 0.2210_002 0.2890_003 0.2120_002 0.2850_003 0.2440_005 0.24604002 0.29704002 0.31104004 0.3280_006
I-HL  0.982¢.000 0.9830.000 0.982¢.000 0.9830.000 0.972¢.000 0.9830.000 0.9830.000 0.9830.000 0.983¢.003
1-RL  0.780¢.004 0.8320.001 0.781¢p.001 0.8299.001 0.8080.002 0.818p.002 0.8320.001 0.849¢.002 0.8670.001

ESPGame AUC

0.7840.004 0.8360.001 0.7850.001 0.8330.002 0.813g.002 0.824(.002 0.836¢.001 0.853¢.002 0.857¢.008

1-OE 0.317¢.005 0.3960.005 0.2940.006 0.3899.004 0.3430.013 0.3390.003 0.4390.007 0.4550.007 0.462¢. 002
1-Cov 0.496¢ g0 0.5740.004 0.4880.003 0.5670.005 0.5480.004 0.5715.003 0.593¢.003 0.628¢.005 0.637¢.006

AP 0.256¢0.002 0.305¢0.004 0.234¢.003 0.3040.004 0.237¢.003 0.2610.001 0.3230.001 0.3310.006 0.3480.003
1-HL 0.9800.000 0.981.000 0.9800.000 0.9810.000 0.9690.000 0.9800.000 0.9810.000 0.9800.000 0.982¢.001
1-RL  0.825¢.992 0.862¢.002 0.8230.002 0.8610.002 0.8330.002 0.8480.001 0.873¢.001 0.885¢.003 0.896¢.000

IAPRTC12 AUC

0.8300.001 0.8640.002 0.825¢.001 0.8630.001 0.8350.001 0.8500.001 0.874¢.000 0.8860.002 0.897¢.007

1-OE 0.378¢.007 0.432¢.00s 0.3400.006 0.4299.000 0.3520.008 0.3900.005 0.468.002 0.463¢.009 0.464¢ 005
1-Cov 0.5340.003 0.5970.004 0.5299.004 0.5970.004 0.564¢.005 0.592¢.004 0.6499.001 0.6759.007 0.686¢. 004

AP 0.5370,002 0.5700,002 0-5140.006 0.5530.002 0.4900‘012 0.551¢.002 0.589¢.005 0.6140.004 0.629¢.007
1-HL 0.8740_001 0.8860_001 0.8780_001 0.8850_001 0.8390_002 0.882()‘001 0.88804002 0.8910.001 0.8960,003
1-RL  0.832¢.001 0.8560.001 0.8310.003 0.8560.001 0.803¢.008 0.844¢.001 0.8630.004 0.877¢.002 0.8799.008

Mirflickr AUC

0.8280.001 0.8460.001 0.8280.003 0.844¢.001 0.7879.012 0.8370.001 0.849¢.004 0.860¢.003 0.862¢.005

1-OE 0.552¢.005 0.631¢.004 0.5109.008 0.607¢.004 0.511g.922 0.585¢.003 0.637¢.007 0.662¢.00s 0.676¢.010
1-Cov 0.605¢.903 0.6409.001 0.6040.005 0.6360.001 0.5720.013 0.6319.002 0.6520.007 0.678¢.003 0.685¢.007

Table 1. Quantitative results on data sets with 50% missing-view and 50% missing-label rates (the bottom right digit is the standard deviation).

et al., 2024]). We designed two experimental scenarios using
70% of the dataset for training. In the first scenario, 50% of
instances in each view were randomly deactivated, ensuring
each sample retained at least one view, while 50% of both
positive and negative labels were removed to simulate partial
label absence. In the second scenario, label noise was in-
troduced alongside view incompleteness by randomly adding
and removing labels, simulating 20% false positives and 20%
false negatives to reflect a realistic noisy label space.

M 0% M 0%
Ml M. C=30% (. [n. E330%
0.8 W 150% 0.8 50%
M= 70% I 70%
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Performance
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(a) Missing-view study (b) Noisy-label study

Figure 4. Performance under varying missing views and label noise.

4.2 Experimental Results and Analysis

Tables 1 and 2 present experimental results on datasets with
missing-label and noisy-label conditions in incomplete multi-
view data. Table 3 shows the ablation study, while Figure 4
illustrates performance trends with varying missing-view and
noisy-label rates. Based on these findings, we conclude:

1. As shown in Tables 1 and 2, our method consistently
outperforms existing approaches in handling missing views
and noisy labels across all benchmark datasets. In particular,
when compared with state-of-the-art multi-view multi-label
learning models, as well as methods specifically designed
to address missing modalities or incomplete labels, our ap-
proach achieves superior performance under both missing-
view and label-noise conditions. These results underscore the
effectiveness and robustness of our model.

2. Our method excels in scenarios where both missing la-
bels and label noise coexist with incomplete views, outper-
forming methods addressing only missing labels. This em-
phasizes the method’s robustness in complex settings, partic-
ularly when label noise accompanies missing data, showcas-
ing its broad applicability and enhanced practical utility.

3. Analysis of Tables 1 and 2 reveals that missing and
noisy labels together present a more challenging problem
than missing labels alone. Despite lower proportions of miss-
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Data Metric GLOCAL CDMM  DM2L

LVSL

iMVWL NAIM3L DICNet SIP DMHNF

AP 0.2050.004 0.2680.005 0.3260.010 0.2439.009 0.304¢.007 0.263¢9.004 0.291g.003 0.3440.008 0.3750.004
I-HL  0.9360.000 0.9440.002 0.9390.000 0.9430.000 0.9410.000 0.9270.000 0.942¢.000 0.9380.000 0-9490.000
1-RL  0.7349.002 0.782¢.003 0.824¢. 004 0.7620.009 0.7980.004 0.7970.002 0.7940.003 0.7950.004 0.8499.009

CorelSk

AUC 0.7350.006 0.772¢.010 0.8210.003 0.7630.002 0.7970.004 0.7860.002 0.7930.005 0.7820.002 0.8430.003

1-OE 0.241¢.017 0.2929.009 0.3719.018 0.2699.011 0.3530.013 0.2770.016 0.316¢.012 0.423¢.007 0.441¢.018
1-Cov 0.531g.007 0.5920.010 0.6450.006 0.581.012 0.653¢.00s 0.628¢.011 0.646¢ 005 0.6550.003 0.7040.012

AP 0.4460.002 0.465¢.006 0.4780.007 0.423¢.008 0.4680.004 0.3990.020 0.4530.003 0.469¢.005 0.5100.011
1-HL 0.862¢.001 0.885¢.002 0.8919.001 0.8870.002 0.8870.000 0.8340.004 0.863¢0.003 0.874¢.001 0.891¢ 001
I-RL  0.674¢.007 0.7080.005 0.7540.003 0.6979.008 0.7460.002 0.663¢.012 0.7070.002 0.709¢.009 0.7530.005

Pascal07

AUC 0.6920.008 0.724¢.002 0.7400.003 0.7160.004 0.7530.001 0.702¢.020 0.7520.003 0.7440.002 0.7760.004

1-OE 0.3980.009 0.394¢.004 0.3780.010 0.3819.000 0.3720.007 0.3520.019 0.387¢.005 0.393¢.017 0.422¢ 012
1-Cov 0.611¢.gos 0.6430.004 0.6770.002 0.622¢ 993 0.6840.006 0.603¢.019 0.6680.003 0.6600 007 0.7149 004

AP 0.1880_003 0.1960_005 0.2620_002 0.1910_004 0.2590_001 0.21604007 0.22404002 0.2770.003 0.2840_006
1-HL 0.9270_001 0.9160_002 0.9240_000 0.9260_000 0.9180,001 0.9230,002 0.9120.000 0.9290.000 0.9360.000
1-RL  0.692¢.002 0.7040.005 0.7530.001 0.7050.003 0.7580.002 0.723¢.004 0.7370.003 0.754¢9.001 0.7619.002

ESPGame

AUC 0.7050.003 0.7029.002 0.7560.003 0.7080.001 0.751¢.004 0.7330.003 0.747¢.002 0.752¢.001 0.771¢.002

1-OE 0.2360.021 0.282¢.004 0.3540.002 0.266¢.006 0.3470.004 0.3090.013 0.305¢.005 0.3980.000 0.406¢. 907
1-Cov 0.446¢.003 0.4480.008 0.519¢.001 0.4370.003 0.517¢.006 0.4810.002 0.4980.004 0.512¢.003 0.521¢.005

AP 0.2070.005 0-2310.001 0-2710.00a 0-2160.002 0-2750.006 0-2140.003 0-2300.000 0-2750.010 0-2910 007
1-HL  0.926¢.000 0.9330.001 0.9360.000 0.9370.002 0.9340.002 0.927¢.001 0.9380.003 0.9370.000 0.945¢.001
1-RL  0.7239.092 0.7460.006 0.781g.001 0.7430.003 0.7730.005 0.7580.002 0.769¢0.000 0.785¢.003 0.7930.001
IAPRTC12 AUC 0.7240.004 0.748¢.001 0.7820.005 0.744¢.002 0.7850.006 0.7500.002 0.774¢.003 0.7830.000 0.806¢.002
1-OE 0.271.00s 0.3409.030 0.3960.004 0.307¢.002 0.3810.009 0.316¢.006 0.3570.003 0.4050.005 0.411¢ 001
1-Cov 0.4720.004 0.481¢.005 0.5380.003 0.479¢.002 0.5350.010 0.507¢.004 0.534¢.007 0.5880.003 0.605¢. 005

AP 0.4570,002 0.4890,005 0-5270.008 0.4600‘003 0.502¢.002 0.4410,009 0.491¢.006 0.5379.001 0.5630.007
1-HL 0.7840_002 0.8050_000 0.8120_003 0.8170_002 0.8110_001 0.774()‘001 0.81104000 0.8130.002 0.8260,003
1-RL  0.7360.001 0.741¢9.002 0.7670.004 0.7490.000 0.7760.001 0.7200.003 0.7670.002 0.771p.001 0.792¢.003

Mirflickr

AUC 0.7240.002 0.7480.003 0.7630.001 0.741¢p.004 0.753¢.002 0.705¢0.001 0.7549.002 0.7520.003 0.7730.004

1-OE 0.457¢.007 0.494¢ 006 0.5740.008 0.4550.003 0.5460.002 0.461g.005 0.5240.004 0.576¢.001 0.591¢.006
1-Cov 0.535¢.005 0.5480.004 0.5730.003 0.9470.001 0.5730.001 0.515¢.002 0.5740.006 0.5930.004 0.612¢ 005

Table 2. Quantitative results on data sets with 40% missing-view and 40% noisy-label rates (the bottom right digit is the standard deviation).

ing/noisy labels in Table 2, overall performance is weaker,
confirming that our method is more effective in handling the
combined challenges of missing and noisy labels.

4. We conducted ablation experiments, showing that high-
order correlations are essential. Replacing them with second-
order correlations weakens their interaction with filtering ma-
trices. Without these matrices, inaccurate high-order correla-
tions degrade accuracy more than second-order ones, high-
lighting their complementary roles. Using two filtering ma-
trices outperforms one due to the label space’s complexity.
A hypergraph based solely on word-to-vector representations
results in sparse high-order correlations. Combining both ap-
proaches enhances accuracy, improving noise correction.

Method Corel5k Pascal07
Backbone M-HNN 7' T¢| AP AUC| AP AUC
v 0.321 0.818 {0.470 0.757
v v 0.363 0.829|0.491 0.767

v v ve 0.368 0.837]0.498 0.771
v v v 10.364 0.836|0.501 0.769
v v v v 0375 0.8430.510 0.776

Table 3. Ablation results on two datasets with 40% missing-view
rate and 40% noisy-label rate.

5 Conclusion

This paper presents a novel dynamic multi-hypergraph neural
network model specifically designed for addressing the chal-
lenges of incomplete multi-view noisy-label learning. The
model integrates multi-view data by capturing high-order cor-
relations among samples, effectively leveraging both feature
and structural information across different views. To address
label noise, we propose label noise filtering matrices that cor-
rects disrupted correlations in the label space by utilizing the
intrinsic high-order correlations in the feature space. Ex-
tensive experiments demonstrate that our approach not only
excels in incomplete multi-view multi-label learning scenar-
ios, but also maintains robust performance in the more chal-
lenging setting of incomplete multi-view learning with noisy
labels. These findings further underscore the effectiveness,
adaptability, and broad applicability of the proposed model.
Moreover, this work introduces a novel problem formu-
lation that closely mirrors the complexities of real-world
multi-label learning scenarios, thereby offering a principled
and practical solution to challenges arising from incomplete
views and noisy annotations. We believe these contribu-
tions lay a solid groundwork for future research, encourag-
ing further exploration and advancement of dynamic multi-
hypergraph methods in diverse application domains.
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